Fingerprint Synthesis: Search with 100 Million Prints

Vishesh Mistry, Joshua J. Engelsma, Anil K. Jain
{"title":"Fingerprint Synthesis: Search with 100 Million Prints","authors":"Vishesh Mistry, Joshua J. Engelsma, Anil K. Jain","doi":"10.1109/IJCB48548.2020.9304885","DOIUrl":null,"url":null,"abstract":"Evaluation of large-scale fingerprint search algorithms has been limited due to lack of publicly available datasets. To address this problem, we utilize a Generative Adversarial Network (GAN) to synthesize a fingerprint dataset consisting of 100 million fingerprint images. In contrast to existing fingerprint synthesis algorithms, we incorporate an identity loss which guides the generator to synthesize fingerprints corresponding to more distinct identities. The characteristics of our synthesized fingerprints are shown to be more similar to real fingerprints than existing meth- ods via eight different metrics (minutiae count - block and template, minutiae direction - block and template, minutiae convex hull area, minutiae spatial distribution, block minutiae quality distribution, and NFIQ 2.0 scores). Additionally, the synthetic fingerprints based on our approach are shown to be more distinct than synthetic fingerprints based on published methods through search results and imposter distribution statistics. Finally, we report for the first time in open literature, search accuracy against a gallery of 1 00 million fingerprints (NIST SD4 Rank-1 accuracy of 89.7%).","PeriodicalId":417270,"journal":{"name":"2020 IEEE International Joint Conference on Biometrics (IJCB)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB48548.2020.9304885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Evaluation of large-scale fingerprint search algorithms has been limited due to lack of publicly available datasets. To address this problem, we utilize a Generative Adversarial Network (GAN) to synthesize a fingerprint dataset consisting of 100 million fingerprint images. In contrast to existing fingerprint synthesis algorithms, we incorporate an identity loss which guides the generator to synthesize fingerprints corresponding to more distinct identities. The characteristics of our synthesized fingerprints are shown to be more similar to real fingerprints than existing meth- ods via eight different metrics (minutiae count - block and template, minutiae direction - block and template, minutiae convex hull area, minutiae spatial distribution, block minutiae quality distribution, and NFIQ 2.0 scores). Additionally, the synthetic fingerprints based on our approach are shown to be more distinct than synthetic fingerprints based on published methods through search results and imposter distribution statistics. Finally, we report for the first time in open literature, search accuracy against a gallery of 1 00 million fingerprints (NIST SD4 Rank-1 accuracy of 89.7%).
指纹合成:搜索1亿个指纹
由于缺乏公开可用的数据集,大规模指纹搜索算法的评估受到限制。为了解决这个问题,我们利用生成对抗网络(GAN)合成了一个由1亿张指纹图像组成的指纹数据集。与现有的指纹合成算法相比,我们引入了身份损失,引导生成器合成更不同身份对应的指纹。通过8个不同的指标(特征块和模板、特征块和模板、特征凸包面积、特征空间分布、特征块质量分布和NFIQ 2.0分数)表明,合成指纹的特征比现有方法更接近真实指纹。此外,通过搜索结果和冒名顶替者分布统计,表明基于我们方法的合成指纹比基于已发表方法的合成指纹更明显。最后,我们首次在公开文献中报告了针对1亿个指纹库的搜索准确率(NIST SD4 Rank-1准确率为89.7%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信