Image Restoration Using Modified Hopfield Fuzzy Regularization Method

M. Bilal, M. Sharif, M. Jaffar, Ayyaz Hussain, A. M. Mirza
{"title":"Image Restoration Using Modified Hopfield Fuzzy Regularization Method","authors":"M. Bilal, M. Sharif, M. Jaffar, Ayyaz Hussain, A. M. Mirza","doi":"10.1109/FUTURETECH.2010.5482736","DOIUrl":null,"url":null,"abstract":"This paper addresses one of the primary problems of visual information processing known as image restoration. Image restoration is a challenging task because of its ill-posed inverse nature. A modified Hopfield neural network with fuzzy adaptive regularization is proposed that shows potential to minimize constraint mean square error in order to guarantee the optimized results. Adaptive regularization was achieved by using fuzzy quasi-range edge detector. The visual results along with the statistical measurements of the resultant images are presented in the paper. Improved SNRs show that the fuzzy regularization method is superior to other statistical and neural network methods when used along with the modified Hopfield neural network.","PeriodicalId":380192,"journal":{"name":"2010 5th International Conference on Future Information Technology","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 5th International Conference on Future Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUTURETECH.2010.5482736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper addresses one of the primary problems of visual information processing known as image restoration. Image restoration is a challenging task because of its ill-posed inverse nature. A modified Hopfield neural network with fuzzy adaptive regularization is proposed that shows potential to minimize constraint mean square error in order to guarantee the optimized results. Adaptive regularization was achieved by using fuzzy quasi-range edge detector. The visual results along with the statistical measurements of the resultant images are presented in the paper. Improved SNRs show that the fuzzy regularization method is superior to other statistical and neural network methods when used along with the modified Hopfield neural network.
基于改进Hopfield模糊正则化方法的图像恢复
本文讨论了视觉信息处理中的一个主要问题,即图像恢复。由于图像的病态逆性质,图像恢复是一项具有挑战性的任务。提出了一种带有模糊自适应正则化的改进Hopfield神经网络,该网络显示了最小化约束均方误差以保证优化结果的潜力。采用模糊拟距离边缘检测器实现自适应正则化。本文给出了视觉结果以及所得图像的统计测量结果。改进的信噪比表明,模糊正则化方法与改进的Hopfield神经网络结合使用时优于其他统计方法和神经网络方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信