A Toolkit for Streaming Process Data Analysis

R. Dijkman, Sander P. F. Peters, A. T. Hofstede
{"title":"A Toolkit for Streaming Process Data Analysis","authors":"R. Dijkman, Sander P. F. Peters, A. T. Hofstede","doi":"10.1109/EDOCW.2016.7584341","DOIUrl":null,"url":null,"abstract":"This paper presents a software toolkit that can be used to analyze event data streams in real-time. It has a specific focus on stochastic analysis of business processes, based on event data that is produced during the execution of those processes. The toolkit provides a software environment that facilitates easy connection to event data streams and quick development and testing of analysis and visualization techniques. It is developed by classifying existing techniques for streaming process data analysis, which are identified in the current literature, and by extracting and formalizing the core mechanisms that these techniques are based on. These core mechanisms serve as the basis for the toolkit. The toolkit is implemented and made available as open source. In this way it can facilitate quick prototyping of streaming process data analysis techniques.","PeriodicalId":287808,"journal":{"name":"2016 IEEE 20th International Enterprise Distributed Object Computing Workshop (EDOCW)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 20th International Enterprise Distributed Object Computing Workshop (EDOCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDOCW.2016.7584341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents a software toolkit that can be used to analyze event data streams in real-time. It has a specific focus on stochastic analysis of business processes, based on event data that is produced during the execution of those processes. The toolkit provides a software environment that facilitates easy connection to event data streams and quick development and testing of analysis and visualization techniques. It is developed by classifying existing techniques for streaming process data analysis, which are identified in the current literature, and by extracting and formalizing the core mechanisms that these techniques are based on. These core mechanisms serve as the basis for the toolkit. The toolkit is implemented and made available as open source. In this way it can facilitate quick prototyping of streaming process data analysis techniques.
流式过程数据分析工具包
本文提出了一个可用于实时分析事件数据流的软件工具箱。它特别关注业务流程的随机分析,该分析基于在这些流程执行期间产生的事件数据。该工具包提供了一个软件环境,可以方便地连接到事件数据流,并快速开发和测试分析和可视化技术。它是通过对当前文献中确定的流过程数据分析的现有技术进行分类,并通过提取和形式化这些技术所基于的核心机制来开发的。这些核心机制是工具包的基础。该工具包作为开放源代码实现并提供。通过这种方式,它可以促进流过程数据分析技术的快速原型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信