An overview of the CMAC neural network

F. Glanz, W. Miller, L. Kraft
{"title":"An overview of the CMAC neural network","authors":"F. Glanz, W. Miller, L. Kraft","doi":"10.1109/ICNN.1991.163366","DOIUrl":null,"url":null,"abstract":"The authors describe the cerebellar model arithmetic computer (CMAC) neural network, which is an alternative to backpropagated multilayer networks. CMAC has properties of generalization, rapid algorithmic computation based on least-mean-square (LMS) training, functional representation, output superposition, and practical hardware realization, all of which are discussed. Data concerning CMAC capacity and generalization are shown. Brief descriptions of applications in pattern recognition, robot control, and signal processing are given.<<ETX>>","PeriodicalId":296300,"journal":{"name":"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1991.163366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

Abstract

The authors describe the cerebellar model arithmetic computer (CMAC) neural network, which is an alternative to backpropagated multilayer networks. CMAC has properties of generalization, rapid algorithmic computation based on least-mean-square (LMS) training, functional representation, output superposition, and practical hardware realization, all of which are discussed. Data concerning CMAC capacity and generalization are shown. Brief descriptions of applications in pattern recognition, robot control, and signal processing are given.<>
CMAC神经网络概述
作者描述了小脑模型算法计算机(CMAC)神经网络,它是反向传播多层网络的一种替代方案。CMAC具有泛化、基于最小均方(LMS)训练的快速算法计算、函数表示、输出叠加和实用的硬件实现等特点。给出了有关CMAC容量和泛化的数据。简要介绍了其在模式识别、机器人控制和信号处理方面的应用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信