Scale selective extended local binary pattern for texture classification

Yuting Hu, Z. Long, G. Al-Regib
{"title":"Scale selective extended local binary pattern for texture classification","authors":"Yuting Hu, Z. Long, G. Al-Regib","doi":"10.1109/ICASSP.2017.7952389","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new texture descriptor, scale selective extended local binary pattern (SSELBP), to characterize texture images with scale variations. We first utilize multi-scale extended local binary patterns (ELBP) with rotation-invariant and uniform mappings to capture robust local microand macro-features. Then, we build a scale space using Gaussian filters and calculate the histogram of multi-scale ELBPs for the image at each scale. Finally, we select the maximum values from the corresponding bins of multi-scale ELBP histograms at different scales as scale-invariant features. A comprehensive evaluation on public texture databases (KTH-TIPS and UMD) shows that the proposed SSELBP has high accuracy comparable to state-of-the-art texture descriptors on gray-scale-, rotation-, and scale-invariant texture classification but uses only one-third of the feature dimension.","PeriodicalId":118243,"journal":{"name":"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2017.7952389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper, we propose a new texture descriptor, scale selective extended local binary pattern (SSELBP), to characterize texture images with scale variations. We first utilize multi-scale extended local binary patterns (ELBP) with rotation-invariant and uniform mappings to capture robust local microand macro-features. Then, we build a scale space using Gaussian filters and calculate the histogram of multi-scale ELBPs for the image at each scale. Finally, we select the maximum values from the corresponding bins of multi-scale ELBP histograms at different scales as scale-invariant features. A comprehensive evaluation on public texture databases (KTH-TIPS and UMD) shows that the proposed SSELBP has high accuracy comparable to state-of-the-art texture descriptors on gray-scale-, rotation-, and scale-invariant texture classification but uses only one-third of the feature dimension.
用于纹理分类的尺度选择性扩展局部二值模式
本文提出了一种新的纹理描述符——尺度选择性扩展局部二值模式(SSELBP)来描述具有尺度变化的纹理图像。我们首先利用具有旋转不变和均匀映射的多尺度扩展局部二值模式(ELBP)来捕获鲁棒的局部微观和宏观特征。然后,利用高斯滤波器构建尺度空间,计算每个尺度下图像的多尺度elbp直方图;最后,我们从不同尺度下的多尺度ELBP直方图对应的bin中选择最大值作为尺度不变特征。对公共纹理数据库(KTH-TIPS和UMD)的综合评估表明,所提出的SSELBP在灰度、旋转和尺度不变纹理分类方面具有与最先进的纹理描述符相当的精度,但仅使用了三分之一的特征维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信