Discovering compositional trends in Mars rock targets from ChemCam spectroscopy and remote imaging

D. Oyen, N. Lanza, R. Porter
{"title":"Discovering compositional trends in Mars rock targets from ChemCam spectroscopy and remote imaging","authors":"D. Oyen, N. Lanza, R. Porter","doi":"10.1109/AIPR.2015.7444527","DOIUrl":null,"url":null,"abstract":"Onboard the Mars rover “Curiosity”, ChemCam contains two instruments that gather geological data in the form of remote micro images (RMI) for geologic context and laser-induced breakdown spectroscopy (LIBS) for chemical composition. By analyzing the geochemical compositional depth trends of rocks, surface layers are identified that provide clues to the past atmospheric and aqueous conditions of the planet. LIBS produces the necessary data of chemical depth profiles with successive laser shots. To quickly identify these surface layers, we fit a Gaussian graphical model (GGM) to LIBS depth profiles on rock targets. The learned GGM is a visual representation of conditional dependencies among the set of shots making for faster identification of targets with interesting depth trends that warrant more in-depth analysis by experts. We show that our learned GGMs reveal information about the compositional trends present in rock targets that match observations made in more focused studies on these same targets. RMI images provide complementary details about the rock surface. Using RMI and LIBS features, we can cluster similar rock targets by the properties of the rock's surface texture and depth profile. We present results that show our machine learning methods can help analyze both the breadth and depth of data collected by ChemCam.","PeriodicalId":440673,"journal":{"name":"2015 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2015.7444527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Onboard the Mars rover “Curiosity”, ChemCam contains two instruments that gather geological data in the form of remote micro images (RMI) for geologic context and laser-induced breakdown spectroscopy (LIBS) for chemical composition. By analyzing the geochemical compositional depth trends of rocks, surface layers are identified that provide clues to the past atmospheric and aqueous conditions of the planet. LIBS produces the necessary data of chemical depth profiles with successive laser shots. To quickly identify these surface layers, we fit a Gaussian graphical model (GGM) to LIBS depth profiles on rock targets. The learned GGM is a visual representation of conditional dependencies among the set of shots making for faster identification of targets with interesting depth trends that warrant more in-depth analysis by experts. We show that our learned GGMs reveal information about the compositional trends present in rock targets that match observations made in more focused studies on these same targets. RMI images provide complementary details about the rock surface. Using RMI and LIBS features, we can cluster similar rock targets by the properties of the rock's surface texture and depth profile. We present results that show our machine learning methods can help analyze both the breadth and depth of data collected by ChemCam.
从ChemCam光谱和远程成像中发现火星岩石目标的成分趋势
“好奇号”火星探测车上的“化学相机”包含两种仪器,它们以远程微图像(RMI)的形式收集地质数据,以地质背景和激光诱导击穿光谱(LIBS)的形式收集化学成分。通过分析岩石的地球化学成分深度趋势,确定了表层,为地球过去的大气和水条件提供了线索。LIBS通过连续的激光射击产生化学深度剖面的必要数据。为了快速识别这些表层,我们将高斯图形模型(GGM)拟合到岩石目标的LIBS深度剖面上。学习到的GGM是一组镜头之间条件依赖关系的视觉表示,可以更快地识别具有有趣深度趋势的目标,这些趋势需要专家进行更深入的分析。我们表明,我们学习的GGMs揭示了岩石目标中存在的成分趋势信息,这些信息与对这些目标进行的更集中的研究结果相匹配。RMI图像提供了岩石表面的补充细节。利用RMI和LIBS特征,我们可以根据岩石表面纹理和深度剖面的性质对相似岩石目标进行聚类。我们展示的结果表明,我们的机器学习方法可以帮助分析ChemCam收集的数据的广度和深度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信