Performance analysis of parallel smoothed particle hydrodynamics on multi-core CPUs

Cheng Wenbo, Yucheng Yao, Yang Zhang
{"title":"Performance analysis of parallel smoothed particle hydrodynamics on multi-core CPUs","authors":"Cheng Wenbo, Yucheng Yao, Yang Zhang","doi":"10.1109/CCIOT.2014.7062511","DOIUrl":null,"url":null,"abstract":"This paper presents a parallel SPH implementation on multi-core CPUs. The implementation uses a hash table to store particles data and divides the program code into 2 parts for parallelization. The first part has no data race, but the second part has data race. Then, the paper compares the running time and parallel speedup of each part to find the bottleneck of the parallel SPH program. The results show that the program can achieve linear speedup just with the first part to be parallelized when the search radius is large. And the second part has become a performance bottleneck only when the search radius is small enough (for each cell only contains one or two particles on average). We present a method to parallelize the second part without affecting the performance of the first part. The results show that our method can ease the performance bottleneck when the search radius is small.","PeriodicalId":255477,"journal":{"name":"Proceedings of 2014 International Conference on Cloud Computing and Internet of Things","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2014 International Conference on Cloud Computing and Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIOT.2014.7062511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a parallel SPH implementation on multi-core CPUs. The implementation uses a hash table to store particles data and divides the program code into 2 parts for parallelization. The first part has no data race, but the second part has data race. Then, the paper compares the running time and parallel speedup of each part to find the bottleneck of the parallel SPH program. The results show that the program can achieve linear speedup just with the first part to be parallelized when the search radius is large. And the second part has become a performance bottleneck only when the search radius is small enough (for each cell only contains one or two particles on average). We present a method to parallelize the second part without affecting the performance of the first part. The results show that our method can ease the performance bottleneck when the search radius is small.
多核cpu上并行光滑粒子流体力学性能分析
本文提出了一种在多核cpu上实现并行SPH的方法。该实现使用哈希表来存储粒子数据,并将程序代码分成两部分进行并行化。第一部分没有数据竞争,但第二部分有数据竞争。然后,对各部分的运行时间和并行加速进行比较,找出并行SPH程序的瓶颈。结果表明,当搜索半径较大时,仅将第一部分并行化即可实现线性加速。只有当搜索半径足够小(每个单元平均只包含一到两个粒子)时,第二部分才会成为性能瓶颈。我们提出了一种在不影响第一部分性能的情况下并行化第二部分的方法。结果表明,该方法可以缓解搜索半径较小时的性能瓶颈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信