Friendly bisections of random graphs

Asaf Ferber, Matthew Kwan, Bhargav P. Narayanan, A. Sah, Mehtaab Sawhney
{"title":"Friendly bisections of random graphs","authors":"Asaf Ferber, Matthew Kwan, Bhargav P. Narayanan, A. Sah, Mehtaab Sawhney","doi":"10.1090/cams/13","DOIUrl":null,"url":null,"abstract":"Resolving a conjecture of Füredi from 1988, we prove that with high probability, the random graph \n\n \n \n \n G\n \n (\n n\n ,\n 1\n \n /\n \n 2\n )\n \n \\mathbb {G}(n,1/2)\n \n\n admits a friendly bisection of its vertex set, i.e., a partition of its vertex set into two parts whose sizes differ by at most one in which \n\n \n \n n\n −\n o\n (\n n\n )\n \n n-o(n)\n \n\n vertices have more neighbours in their own part as across. Our proof is constructive, and in the process, we develop a new method to study stochastic processes driven by degree information in random graphs; this involves combining enumeration techniques with an abstract second moment argument.","PeriodicalId":285678,"journal":{"name":"Communications of the American Mathematical Society","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/cams/13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Resolving a conjecture of Füredi from 1988, we prove that with high probability, the random graph G ( n , 1 / 2 ) \mathbb {G}(n,1/2) admits a friendly bisection of its vertex set, i.e., a partition of its vertex set into two parts whose sizes differ by at most one in which n − o ( n ) n-o(n) vertices have more neighbours in their own part as across. Our proof is constructive, and in the process, we develop a new method to study stochastic processes driven by degree information in random graphs; this involves combining enumeration techniques with an abstract second moment argument.
随机图的友好等分
通过求解1988年f redi的一个猜想,我们高概率地证明了随机图G (n,1/2) \mathbb {G}(n,1/2)允许其顶点集的友好对分,即它的顶点集被划分为两个大小最多只差一个的部分,其中n−o(n) n-o(n)个顶点在它们自己的部分有更多的邻居。我们的证明是建设性的,并且在此过程中,我们开发了一种研究随机图中由度信息驱动的随机过程的新方法;这涉及到将枚举技术与抽象的秒矩参数相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信