{"title":"Markov Logic meets Graph Neural Networks: A Study for Situational Awareness","authors":"V. Nguyen","doi":"10.23919/fusion49465.2021.9627010","DOIUrl":null,"url":null,"abstract":"Situational awareness requires continual learning from observations and adaptive reasoning from domain and contextual knowledge. The integration of reasoning and learning has been a standing goal of machine learning and AI in general, and a pressing need for real-world situational awareness in particular. Representative techniques among the numerous methods proposed include integrating logics with learning formalisms, whether probabilistic graphical models or neural methods. These techniques are motivated by the need to model and exploit the symmetry, regularities and complex relations between entities exhibited in real world scenarios (in the form of relational or graph data) for effective reasoning and learning. In this work, we investigate the benefits of integrating two prominent methods for reasoning and learning with relational/graph data, Markov Logic Networks (or simply Markov Logic) and Graph Neural Networks. The former is well-recognised for its powerful representation and uncertainty handling, while the latter have gained much attention due to their efficiency in handling large-scale graph datasets. This paper reports on the potential benefits of combining their respective strengths and applying them to a use case illustration in the maritime domain, together with empirical results.","PeriodicalId":226850,"journal":{"name":"2021 IEEE 24th International Conference on Information Fusion (FUSION)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 24th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion49465.2021.9627010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Situational awareness requires continual learning from observations and adaptive reasoning from domain and contextual knowledge. The integration of reasoning and learning has been a standing goal of machine learning and AI in general, and a pressing need for real-world situational awareness in particular. Representative techniques among the numerous methods proposed include integrating logics with learning formalisms, whether probabilistic graphical models or neural methods. These techniques are motivated by the need to model and exploit the symmetry, regularities and complex relations between entities exhibited in real world scenarios (in the form of relational or graph data) for effective reasoning and learning. In this work, we investigate the benefits of integrating two prominent methods for reasoning and learning with relational/graph data, Markov Logic Networks (or simply Markov Logic) and Graph Neural Networks. The former is well-recognised for its powerful representation and uncertainty handling, while the latter have gained much attention due to their efficiency in handling large-scale graph datasets. This paper reports on the potential benefits of combining their respective strengths and applying them to a use case illustration in the maritime domain, together with empirical results.