UniCoRN: Unified Cognitive Signal ReconstructioN bridging cognitive signals and human language

Nuwa Xi, Sendong Zhao, Hao Wang, Chi Liu, Bing Qin, Ting Liu
{"title":"UniCoRN: Unified Cognitive Signal ReconstructioN bridging cognitive signals and human language","authors":"Nuwa Xi, Sendong Zhao, Hao Wang, Chi Liu, Bing Qin, Ting Liu","doi":"10.48550/arXiv.2307.05355","DOIUrl":null,"url":null,"abstract":"Decoding text stimuli from cognitive signals (e.g. fMRI) enhances our understanding of the human language system, paving the way for building versatile Brain-Computer Interface. However, existing studies largely focus on decoding individual word-level fMRI volumes from a restricted vocabulary, which is far too idealized for real-world application. In this paper, we propose fMRI2text, the first open-vocabulary task aiming to bridge fMRI time series and human language. Furthermore, to explore the potential of this new task, we present a baseline solution, UniCoRN: the Unified Cognitive Signal ReconstructioN for Brain Decoding. By reconstructing both individual time points and time series, UniCoRN establishes a robust encoder for cognitive signals (fMRI & EEG). Leveraging a pre-trained language model as decoder, UniCoRN proves its efficacy in decoding coherent text from fMRI series across various split settings. Our model achieves a 34.77% BLEU score on fMRI2text, and a 37.04% BLEU when generalized to EEG-to-text decoding, thereby surpassing the former baseline. Experimental results indicate the feasibility of decoding consecutive fMRI volumes, and the effectiveness of decoding different cognitive signals using a unified structure.","PeriodicalId":352845,"journal":{"name":"Annual Meeting of the Association for Computational Linguistics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Meeting of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.05355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Decoding text stimuli from cognitive signals (e.g. fMRI) enhances our understanding of the human language system, paving the way for building versatile Brain-Computer Interface. However, existing studies largely focus on decoding individual word-level fMRI volumes from a restricted vocabulary, which is far too idealized for real-world application. In this paper, we propose fMRI2text, the first open-vocabulary task aiming to bridge fMRI time series and human language. Furthermore, to explore the potential of this new task, we present a baseline solution, UniCoRN: the Unified Cognitive Signal ReconstructioN for Brain Decoding. By reconstructing both individual time points and time series, UniCoRN establishes a robust encoder for cognitive signals (fMRI & EEG). Leveraging a pre-trained language model as decoder, UniCoRN proves its efficacy in decoding coherent text from fMRI series across various split settings. Our model achieves a 34.77% BLEU score on fMRI2text, and a 37.04% BLEU when generalized to EEG-to-text decoding, thereby surpassing the former baseline. Experimental results indicate the feasibility of decoding consecutive fMRI volumes, and the effectiveness of decoding different cognitive signals using a unified structure.
麒麟:统一认知信号重建,连接认知信号和人类语言
从认知信号中解码文本刺激(如fMRI)增强了我们对人类语言系统的理解,为构建多功能脑机接口铺平了道路。然而,现有的研究主要集中在从有限的词汇中解码单个单词级的fMRI体积,这对于现实世界的应用来说太理想化了。在本文中,我们提出了fMRI2text,这是第一个旨在连接fMRI时间序列和人类语言的开放词汇任务。此外,为了探索这项新任务的潜力,我们提出了一个基线解决方案,UniCoRN:用于大脑解码的统一认知信号重建。通过重建单个时间点和时间序列,UniCoRN为认知信号(fMRI和EEG)建立了一个鲁棒编码器。利用预训练的语言模型作为解码器,UniCoRN证明了其在各种分裂设置下解码fMRI系列连贯文本的有效性。我们的模型在fmrri2text上达到了34.77%的BLEU分数,在推广到EEG-to-text解码时达到了37.04%的BLEU分数,从而超过了以前的基线。实验结果表明,该方法对fMRI连续体进行解码的可行性,以及对不同认知信号进行统一结构解码的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信