An Adaptive Perturbation Scheme in Finite Difference Gradient Approximation

M. Sadeeq-Ullah, Azzam-ul-Asar, Siraj-ul-Islam
{"title":"An Adaptive Perturbation Scheme in Finite Difference Gradient Approximation","authors":"M. Sadeeq-Ullah, Azzam-ul-Asar, Siraj-ul-Islam","doi":"10.1109/ICET.2007.4516337","DOIUrl":null,"url":null,"abstract":"The idea presented in this paper is to make perturbation constant adaptive in finite difference gradient approximation. In the proposed method we keep perturbation constant relatively large in the beginning and reduce it as the number of iterations proceed. It is also shown that large perturbation may cause false gradient information included in the approximated gradient. Problem of false gradient information is solved by placing a check not to include it in the resultant gradient. Numerical experiments show practical usefulness and improved convergence of the new approach.","PeriodicalId":346773,"journal":{"name":"2007 International Conference on Emerging Technologies","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICET.2007.4516337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The idea presented in this paper is to make perturbation constant adaptive in finite difference gradient approximation. In the proposed method we keep perturbation constant relatively large in the beginning and reduce it as the number of iterations proceed. It is also shown that large perturbation may cause false gradient information included in the approximated gradient. Problem of false gradient information is solved by placing a check not to include it in the resultant gradient. Numerical experiments show practical usefulness and improved convergence of the new approach.
有限差分梯度逼近中的自适应摄动格式
本文提出的思想是使微扰常数在有限差分梯度近似中自适应。在该方法中,我们在开始时保持较大的扰动常数,并随着迭代次数的增加而减小扰动常数。结果还表明,大的扰动可能导致梯度近似中包含错误的梯度信息。通过在生成的梯度中设置不包含虚假梯度信息的检查,解决了虚假梯度信息的问题。数值实验证明了该方法的实用性和收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信