Liouville Type Results For Polyharmonic Inequalities with Nonlocal Terms

Bei Wang
{"title":"Liouville Type Results For Polyharmonic Inequalities with Nonlocal Terms","authors":"Bei Wang","doi":"10.56557/ajomcor/2023/v30i28236","DOIUrl":null,"url":null,"abstract":"In this note, we study the polyharmonic inequalities system\\[(-\\Delta)^m u_i \\geq \\sum_{j=1}^n e_{i j}\\left(\\Psi_{i j}(|x|) * u_j^{p_{i j}}\\right) u_i^{q_{i j}} \\quad \\text { in }{ }^N, \\quad i=1,2, \\cdots, n, \\]where \\(N \\geq 1\\) and \\(m \\geq 1\\) are integers, \\(p_{i j} \\geq 1, q_{i j}>0\\). \\(\\Delta^m\\) denotes the m-polyharmonic operator. The operator \\(*\\) denotes the convolution and \\(\\Psi_{i j}\\) is a function that has certain properties. \\(\\left(e_{i j}\\right)\\) is the adjacency matrix. By poly-superharmonic propery of u and some estimates, we get a Liouville type result of (0.1), which generalize the recent results on these inequalities.","PeriodicalId":200824,"journal":{"name":"Asian Journal of Mathematics and Computer Research","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics and Computer Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56557/ajomcor/2023/v30i28236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this note, we study the polyharmonic inequalities system\[(-\Delta)^m u_i \geq \sum_{j=1}^n e_{i j}\left(\Psi_{i j}(|x|) * u_j^{p_{i j}}\right) u_i^{q_{i j}} \quad \text { in }{ }^N, \quad i=1,2, \cdots, n, \]where \(N \geq 1\) and \(m \geq 1\) are integers, \(p_{i j} \geq 1, q_{i j}>0\). \(\Delta^m\) denotes the m-polyharmonic operator. The operator \(*\) denotes the convolution and \(\Psi_{i j}\) is a function that has certain properties. \(\left(e_{i j}\right)\) is the adjacency matrix. By poly-superharmonic propery of u and some estimates, we get a Liouville type result of (0.1), which generalize the recent results on these inequalities.
具有非局部项的多谐不等式的Liouville型结果
本文研究了多谐不等式系统\[(-\Delta)^m u_i \geq \sum_{j=1}^n e_{i j}\left(\Psi_{i j}(|x|) * u_j^{p_{i j}}\right) u_i^{q_{i j}} \quad \text { in }{ }^N, \quad i=1,2, \cdots, n, \],其中\(N \geq 1\)和\(m \geq 1\)为整数,\(p_{i j} \geq 1, q_{i j}>0\)。\(\Delta^m\)表示m-多谐算子。运算符\(*\)表示卷积,\(\Psi_{i j}\)是一个具有某些属性的函数。\(\left(e_{i j}\right)\)为邻接矩阵。利用u的多超调和性质和一些估计,得到了(0.1)的Liouville型结果,推广了最近关于这些不等式的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信