Automated Extraction of Semantic Legal Metadata using Natural Language Processing

Amin Sleimi, Nicolas Sannier, M. Sabetzadeh, L. Briand, J. Dann
{"title":"Automated Extraction of Semantic Legal Metadata using Natural Language Processing","authors":"Amin Sleimi, Nicolas Sannier, M. Sabetzadeh, L. Briand, J. Dann","doi":"10.1109/RE.2018.00022","DOIUrl":null,"url":null,"abstract":"[Context] Semantic legal metadata provides information that helps with understanding and interpreting the meaning of legal provisions. Such metadata is important for the systematic analysis of legal requirements. [Objectives] Our work is motivated by two observations: (1) The existing requirements engineering (RE) literature does not provide a harmonized view on the semantic metadata types that are useful for legal requirements analysis. (2) Automated support for the extraction of semantic legal metadata is scarce, and further does not exploit the full potential of natural language processing (NLP). Our objective is to take steps toward addressing these limitations. [Methods] We review and reconcile the semantic legal metadata types proposed in RE. Subsequently, we conduct a qualitative study aimed at investigating how the identified metadata types can be extracted automatically. [Results and Conclusions] We propose (1) a harmonized conceptual model for the semantic metadata types pertinent to legal requirements analysis, and (2) automated extraction rules for these metadata types based on NLP. We evaluate the extraction rules through a case study. Our results indicate that the rules generate metadata annotations with high accuracy.","PeriodicalId":445032,"journal":{"name":"2018 IEEE 26th International Requirements Engineering Conference (RE)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 26th International Requirements Engineering Conference (RE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RE.2018.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

[Context] Semantic legal metadata provides information that helps with understanding and interpreting the meaning of legal provisions. Such metadata is important for the systematic analysis of legal requirements. [Objectives] Our work is motivated by two observations: (1) The existing requirements engineering (RE) literature does not provide a harmonized view on the semantic metadata types that are useful for legal requirements analysis. (2) Automated support for the extraction of semantic legal metadata is scarce, and further does not exploit the full potential of natural language processing (NLP). Our objective is to take steps toward addressing these limitations. [Methods] We review and reconcile the semantic legal metadata types proposed in RE. Subsequently, we conduct a qualitative study aimed at investigating how the identified metadata types can be extracted automatically. [Results and Conclusions] We propose (1) a harmonized conceptual model for the semantic metadata types pertinent to legal requirements analysis, and (2) automated extraction rules for these metadata types based on NLP. We evaluate the extraction rules through a case study. Our results indicate that the rules generate metadata annotations with high accuracy.
基于自然语言处理的语义法律元数据自动提取
[上下文]语义法律元数据提供有助于理解和解释法律条款含义的信息。这种元数据对于系统地分析法律要求非常重要。[目标]我们的工作是由两个观察结果驱动的:(1)现有的需求工程(RE)文献没有提供对法律需求分析有用的语义元数据类型的统一视图。(2)对语义法律元数据提取的自动化支持是稀缺的,并且进一步没有充分利用自然语言处理(NLP)的潜力。我们的目标是采取措施解决这些限制。[方法]我们对RE中提出的语义合法元数据类型进行了审查和协调。随后,我们进行了定性研究,旨在探讨如何自动提取已识别的元数据类型。[结果与结论]我们提出了(1)与法律需求分析相关的语义元数据类型的统一概念模型;(2)基于自然语言处理的这些元数据类型的自动提取规则。我们通过一个案例研究来评估抽取规则。结果表明,该规则生成的元数据注释具有较高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信