Improving the Performance of Batch-Constrained Reinforcement Learning in Continuous Action Domains via Generative Adversarial Networks

Baturay Sağlam, Onat Dalmaz, Kaan Gonc, S. Kozat
{"title":"Improving the Performance of Batch-Constrained Reinforcement Learning in Continuous Action Domains via Generative Adversarial Networks","authors":"Baturay Sağlam, Onat Dalmaz, Kaan Gonc, S. Kozat","doi":"10.1109/SIU55565.2022.9864786","DOIUrl":null,"url":null,"abstract":"The Batch-Constrained Q-learning algorithm is shown to overcome the extrapolation error and enable deep reinforcement learning agents to learn from a previously collected fixed batch of transitions. However, due to conditional Variational Autoencoders (VAE) used in the data generation module, the BCQ algorithm optimizes a lower variational bound and hence, it is not generalizable to environments with large state and action spaces. In this paper, we show that the performance of the BCQ algorithm can be further improved with the employment of one of the recent advances in deep learning, Generative Adversarial Networks. Our extensive set of experiments shows that the introduced approach significantly improves BCQ in all of the control tasks tested. Moreover, the introduced approach demonstrates robust generalizability to environments with large state and action spaces in the OpenAI Gym control suite.","PeriodicalId":115446,"journal":{"name":"2022 30th Signal Processing and Communications Applications Conference (SIU)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU55565.2022.9864786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Batch-Constrained Q-learning algorithm is shown to overcome the extrapolation error and enable deep reinforcement learning agents to learn from a previously collected fixed batch of transitions. However, due to conditional Variational Autoencoders (VAE) used in the data generation module, the BCQ algorithm optimizes a lower variational bound and hence, it is not generalizable to environments with large state and action spaces. In this paper, we show that the performance of the BCQ algorithm can be further improved with the employment of one of the recent advances in deep learning, Generative Adversarial Networks. Our extensive set of experiments shows that the introduced approach significantly improves BCQ in all of the control tasks tested. Moreover, the introduced approach demonstrates robust generalizability to environments with large state and action spaces in the OpenAI Gym control suite.
基于生成对抗网络的连续动作域批约束强化学习性能改进
batch - constrained Q-learning算法克服了外推误差,使深度强化学习代理能够从先前收集的固定批次过渡中学习。然而,由于在数据生成模块中使用了条件变分自编码器(conditional Variational Autoencoders, VAE), BCQ算法优化的是一个较低的变分界,因此不能推广到具有大状态和动作空间的环境中。在本文中,我们证明了BCQ算法的性能可以通过使用深度学习的最新进展之一——生成对抗网络来进一步提高。我们大量的实验表明,所引入的方法在所有测试的控制任务中显著提高了BCQ。此外,所引入的方法展示了OpenAI Gym控制套件中具有大型状态和动作空间的环境的健壮通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信