A Prior Knowledge Based Neural Attention Model for Opioid Topic Identification

Riheng Yao, Qiudan Li, W. Lo‐Ciganic, D. Zeng
{"title":"A Prior Knowledge Based Neural Attention Model for Opioid Topic Identification","authors":"Riheng Yao, Qiudan Li, W. Lo‐Ciganic, D. Zeng","doi":"10.1109/ISI.2019.8823280","DOIUrl":null,"url":null,"abstract":"The opioid epidemic has become a serious public health crisis in the United States. Social media sources such as Reddit containing user-generated content may be a valuable safety surveillance platform to evaluate discussions discerning opioid use. This paper proposes a prior knowledge based neural attention model for opioid topics identification, which considers prior knowledge with attention mechanism. Experimental results on a real-world dataset show that our model can extract coherent topics, the identified less discussed but important topics provide more comprehensive information for opioid safety surveillance.","PeriodicalId":156130,"journal":{"name":"2019 IEEE International Conference on Intelligence and Security Informatics (ISI)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Intelligence and Security Informatics (ISI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2019.8823280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The opioid epidemic has become a serious public health crisis in the United States. Social media sources such as Reddit containing user-generated content may be a valuable safety surveillance platform to evaluate discussions discerning opioid use. This paper proposes a prior knowledge based neural attention model for opioid topics identification, which considers prior knowledge with attention mechanism. Experimental results on a real-world dataset show that our model can extract coherent topics, the identified less discussed but important topics provide more comprehensive information for opioid safety surveillance.
基于先验知识的阿片主题识别神经注意模型
阿片类药物的流行已经成为美国严重的公共卫生危机。Reddit等包含用户生成内容的社交媒体来源可能是一个有价值的安全监控平台,可以评估有关阿片类药物使用的讨论。本文提出了一种基于先验知识的阿片主题识别神经注意模型,该模型将先验知识与注意机制相结合。在真实数据集上的实验结果表明,我们的模型可以提取连贯的主题,确定的较少讨论但重要的主题为阿片类药物安全监测提供了更全面的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信