{"title":"Randomized lattice decoding: Bridging the gap between lattice reduction and sphere decoding","authors":"Shuiyin Liu, Cong Ling, D. Stehlé","doi":"10.1109/ISIT.2010.5513543","DOIUrl":null,"url":null,"abstract":"Sphere decoding achieves maximum-likelihood (ML) performance at the cost of exponential complexity; lattice reduction-aided decoding significantly reduces the decoding complexity, but exhibits a widening gap to ML performance as the dimension increases. To bridge the gap between them, this paper presents randomized lattice decoding based on Klein's randomized algorithm, which is a randomized version of Babai's nearest plane algorithm. The technical contribution of this paper is two-fold: we analyze and optimize the performance of randomized lattice decoding resulting in reduced decoding complexity, and propose a very efficient implementation of random rounding. Simulation results demonstrate near-ML performance achieved by a moderate number of calls, when the dimension is not too large.","PeriodicalId":147055,"journal":{"name":"2010 IEEE International Symposium on Information Theory","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2010.5513543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Sphere decoding achieves maximum-likelihood (ML) performance at the cost of exponential complexity; lattice reduction-aided decoding significantly reduces the decoding complexity, but exhibits a widening gap to ML performance as the dimension increases. To bridge the gap between them, this paper presents randomized lattice decoding based on Klein's randomized algorithm, which is a randomized version of Babai's nearest plane algorithm. The technical contribution of this paper is two-fold: we analyze and optimize the performance of randomized lattice decoding resulting in reduced decoding complexity, and propose a very efficient implementation of random rounding. Simulation results demonstrate near-ML performance achieved by a moderate number of calls, when the dimension is not too large.