A web service for automatic word class acquisition

Stijn De Saeger, Jun'ichi Kazama, Kentaro Torisawa, M. Murata, Ichiro Yamada, Kow Kuroda
{"title":"A web service for automatic word class acquisition","authors":"Stijn De Saeger, Jun'ichi Kazama, Kentaro Torisawa, M. Murata, Ichiro Yamada, Kow Kuroda","doi":"10.1145/1667780.1667806","DOIUrl":null,"url":null,"abstract":"In this paper we present a Web service for building NLP resources to construct semantic word classes in Japanese. The system takes a few seed words belonging to the target class as input and uses automatic class expansion to suggest semantically similar training samples for the user to label. The system automatically generates random negative training samples as well, and then trains a supervised classifier on this labeled data to generate the target word class from 107 candidate words extracted from a corpus of of 108 Web documents. This system eliminates the need for expert machine learning knowledge in creating semantic word classes, and we experimentally show that it significantly reduces the human effort required to build them.","PeriodicalId":103128,"journal":{"name":"Proceedings of the 3rd International Universal Communication Symposium","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Universal Communication Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1667780.1667806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we present a Web service for building NLP resources to construct semantic word classes in Japanese. The system takes a few seed words belonging to the target class as input and uses automatic class expansion to suggest semantically similar training samples for the user to label. The system automatically generates random negative training samples as well, and then trains a supervised classifier on this labeled data to generate the target word class from 107 candidate words extracted from a corpus of of 108 Web documents. This system eliminates the need for expert machine learning knowledge in creating semantic word classes, and we experimentally show that it significantly reduces the human effort required to build them.
一个用于自动获取词类的web服务
本文提出了一种用于构建日语语义词类的自然语言处理资源的Web服务。该系统将一些属于目标类的种子词作为输入,并使用自动类扩展来建议语义相似的训练样本供用户标记。系统也会自动生成随机的负训练样本,然后在这些标记的数据上训练一个监督分类器,从108个Web文档的语料库中提取107个候选词来生成目标词类。该系统在创建语义词类时消除了对专家机器学习知识的需求,并且我们通过实验表明,它显着减少了构建语义词类所需的人力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信