Diffusion maps for exploring electro-optical synthetic vehicle image data

J. Ramirez, O. Mendoza-Schrock
{"title":"Diffusion maps for exploring electro-optical synthetic vehicle image data","authors":"J. Ramirez, O. Mendoza-Schrock","doi":"10.1109/NAECON.2012.6531042","DOIUrl":null,"url":null,"abstract":"In this work, we explore low-dimensional representations of high-dimensional data derived from electro-optical synthetic vehicle images. The collection of vehicle images consists of four different vehicle models: Toyota Camry, Toyota Avalon, Toyota Tacoma, and Nissan Sentra. This data contains 3,601 160 × 213 gray-scale vehicle images sampled uniformly over a camera view hemisphere. We use the non-linear manifold learning technique of diffusion maps with Gaussian kernel to explore low-dimensional structure the high-dimensional cloud of vehicle image observations. Diffusion maps have been shown to be a valuable tool in the analysis of high-dimensional data and the technique is able to extract an approximation for the underlying structure inherent to the data. Our analysis includes examining how the diffusion time and kernel width leads to different low-dimensional representations and we present a novel technique to relate the kernel width to the distribution of data in the observation space. In addition, we present initial results for multi-class vehicle classification through low-dimensional embedding coordinates and the out-of-sample extension of unlabeled vehicle images.","PeriodicalId":352567,"journal":{"name":"2012 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2012.6531042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this work, we explore low-dimensional representations of high-dimensional data derived from electro-optical synthetic vehicle images. The collection of vehicle images consists of four different vehicle models: Toyota Camry, Toyota Avalon, Toyota Tacoma, and Nissan Sentra. This data contains 3,601 160 × 213 gray-scale vehicle images sampled uniformly over a camera view hemisphere. We use the non-linear manifold learning technique of diffusion maps with Gaussian kernel to explore low-dimensional structure the high-dimensional cloud of vehicle image observations. Diffusion maps have been shown to be a valuable tool in the analysis of high-dimensional data and the technique is able to extract an approximation for the underlying structure inherent to the data. Our analysis includes examining how the diffusion time and kernel width leads to different low-dimensional representations and we present a novel technique to relate the kernel width to the distribution of data in the observation space. In addition, we present initial results for multi-class vehicle classification through low-dimensional embedding coordinates and the out-of-sample extension of unlabeled vehicle images.
用于探索光电合成车辆图像数据的扩散图
在这项工作中,我们探索了来自光电合成车辆图像的高维数据的低维表示。车辆图像集合包括四种不同的车型:丰田凯美瑞、丰田阿瓦隆、丰田塔科马和日产森特拉。该数据包含3,601张160 × 213灰度车辆图像,在相机视图半球上均匀采样。利用高斯核扩散映射的非线性流形学习技术,对车辆图像观测的高维云进行低维结构的探索。扩散图已被证明是分析高维数据的一个有价值的工具,该技术能够提取数据固有的底层结构的近似值。我们的分析包括研究扩散时间和核宽度如何导致不同的低维表示,我们提出了一种将核宽度与观测空间中数据分布联系起来的新技术。此外,我们还通过低维嵌入坐标和未标记车辆图像的样本外扩展给出了多类车辆分类的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信