The ARGOT strategy III: the BBN Butterfly multiprocessor

E. O'Neil, C. G. Shaefer
{"title":"The ARGOT strategy III: the BBN Butterfly multiprocessor","authors":"E. O'Neil, C. G. Shaefer","doi":"10.1109/SUPERC.1988.74147","DOIUrl":null,"url":null,"abstract":"The ARGOT strategy combines genetic algorithms with a mechanism providing a dynamically adaptive representation to form a robust optimization tool, as previously shown in the uniprocessor environment. For implementation of ARGOT on the BBN Butterfly multiprocessor, a parallel selection algorithm and a method of incremental payoff update were developed. These lead to enhanced parallelism and reduced the amount of computation needed by any genetic algorithms, including ARGOT. Experimental results on two matrix problems are presented, one a linear system from a FEM problem, and the other a nonlinear problem not well-behaved enough for consistent conjugate gradient results.<<ETX>>","PeriodicalId":103561,"journal":{"name":"Proceedings Supercomputing Vol.II: Science and Applications","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Supercomputing Vol.II: Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SUPERC.1988.74147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The ARGOT strategy combines genetic algorithms with a mechanism providing a dynamically adaptive representation to form a robust optimization tool, as previously shown in the uniprocessor environment. For implementation of ARGOT on the BBN Butterfly multiprocessor, a parallel selection algorithm and a method of incremental payoff update were developed. These lead to enhanced parallelism and reduced the amount of computation needed by any genetic algorithms, including ARGOT. Experimental results on two matrix problems are presented, one a linear system from a FEM problem, and the other a nonlinear problem not well-behaved enough for consistent conjugate gradient results.<>
ARGOT策略III: BBN Butterfly多处理器
ARGOT策略将遗传算法与提供动态自适应表示的机制相结合,形成一个健壮的优化工具,如前面在单处理器环境中所示。为了在BBN Butterfly多处理器上实现ARGOT,提出了一种并行选择算法和增量收益更新方法。这提高了并行性,减少了任何遗传算法(包括ARGOT)所需的计算量。本文给出了两个矩阵问题的实验结果,一个是由有限元问题得到的线性系统,另一个是由于共轭梯度结果不够一致的非线性问题
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信