Comparative benchmarking: matrix multiplication on a multicore coprocessor and a GPU

Md. Salim, Ali O. Akkirman, Mert Hidayetoglu, L. Gurel
{"title":"Comparative benchmarking: matrix multiplication on a multicore coprocessor and a GPU","authors":"Md. Salim, Ali O. Akkirman, Mert Hidayetoglu, L. Gurel","doi":"10.1109/CEM.2015.7237429","DOIUrl":null,"url":null,"abstract":"This paper reports the performances of an Intel Xeon Phi coprocessor and an Nvidia Tesla GPU for multiplication of large matrices. For this purpose, various libraries, such as Intel MKL and MAGMA, are employed with different execution modes of the coprocessor. We compare the performances of the coprocessor and the GPU in terms of running time, memory requirement, and programming difficulty for the special case of matrix-matrix multiplication.","PeriodicalId":409699,"journal":{"name":"2015 Computational Electromagnetics International Workshop (CEM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Computational Electromagnetics International Workshop (CEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEM.2015.7237429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper reports the performances of an Intel Xeon Phi coprocessor and an Nvidia Tesla GPU for multiplication of large matrices. For this purpose, various libraries, such as Intel MKL and MAGMA, are employed with different execution modes of the coprocessor. We compare the performances of the coprocessor and the GPU in terms of running time, memory requirement, and programming difficulty for the special case of matrix-matrix multiplication.
比较基准测试:多核协处理器和GPU上的矩阵乘法
本文报道了Intel Xeon Phi协处理器和Nvidia Tesla GPU处理大矩阵乘法的性能。为此,各种库(如Intel MKL和MAGMA)被用于协处理器的不同执行模式。我们比较了协处理器和GPU在运行时间、内存需求和矩阵-矩阵乘法特殊情况下的编程难度方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信