Profile Aware ObScure Logging (PaOSLo): A Web Search Privacy-Preserving Protocol to Mitigate Digital Traces

M. Ullah, R. Khan, Irfan Ullah Khan, N. Aslam, Sumayh S. Aljameel, Muhammad Inam Ul Haq, Muhammad Arshad Islam
{"title":"Profile Aware ObScure Logging (PaOSLo): A Web Search Privacy-Preserving Protocol to Mitigate Digital Traces","authors":"M. Ullah, R. Khan, Irfan Ullah Khan, N. Aslam, Sumayh S. Aljameel, Muhammad Inam Ul Haq, Muhammad Arshad Islam","doi":"10.1155/2022/2109024","DOIUrl":null,"url":null,"abstract":"Web search querying is an inevitable activity of any Internet user. The web search engine (WSE) is the easiest way to search and retrieve data from the Internet. The WSE stores the user’s search queries to retrieve the personalized search result in a form of query log. A user often leaves digital traces and sensitive information in the query log. WSE is known to sell the query log to a third party to generate revenue. However, the release of the query log can compromise the security and privacy of a user. In this work, we propose a Profile Aware ObScure Logging (PaOSLo) Web search privacy-preserving protocol that mitigates the digital traces a user leaves in Web searching. PaOSLo systematically groups users based on profile similarity. The primary objective of this work is to evaluate the impact of the systematic group compared to random grouping. We first computed the similarity between the users’ profiles and then clustered them using the K-mean algorithm to group the users systematically. Unlikability and indistinguishability are the two dimensions in which we have measured the privacy of a user. To compute the impact of systematic grouping on a user’s privacy, we have experimented with and compared the performance of PaOSLo with modern distributed protocols like OSLo and UUP(e). Results show that, at the top degree of the ODP hierarchy, PaOSLo preserved 10% and 3% better profile privacy than the modern distributed protocols mentioned above. In addition, the PaOSLo has less profile exposure for any group size and at each degree of the ODP hierarchy.","PeriodicalId":167643,"journal":{"name":"Secur. Commun. Networks","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Secur. Commun. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/2109024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Web search querying is an inevitable activity of any Internet user. The web search engine (WSE) is the easiest way to search and retrieve data from the Internet. The WSE stores the user’s search queries to retrieve the personalized search result in a form of query log. A user often leaves digital traces and sensitive information in the query log. WSE is known to sell the query log to a third party to generate revenue. However, the release of the query log can compromise the security and privacy of a user. In this work, we propose a Profile Aware ObScure Logging (PaOSLo) Web search privacy-preserving protocol that mitigates the digital traces a user leaves in Web searching. PaOSLo systematically groups users based on profile similarity. The primary objective of this work is to evaluate the impact of the systematic group compared to random grouping. We first computed the similarity between the users’ profiles and then clustered them using the K-mean algorithm to group the users systematically. Unlikability and indistinguishability are the two dimensions in which we have measured the privacy of a user. To compute the impact of systematic grouping on a user’s privacy, we have experimented with and compared the performance of PaOSLo with modern distributed protocols like OSLo and UUP(e). Results show that, at the top degree of the ODP hierarchy, PaOSLo preserved 10% and 3% better profile privacy than the modern distributed protocols mentioned above. In addition, the PaOSLo has less profile exposure for any group size and at each degree of the ODP hierarchy.
配置文件感知模糊日志(PaOSLo):一种减少数字痕迹的网络搜索隐私保护协议
网络搜索查询是任何互联网用户不可避免的活动。web搜索引擎(WSE)是从Internet上搜索和检索数据的最简单的方法。WSE以查询日志的形式存储用户的搜索查询,以便检索个性化的搜索结果。用户经常在查询日志中留下数字痕迹和敏感信息。众所周知,WSE将查询日志出售给第三方以产生收入。但是,查询日志的发布可能会危及用户的安全和隐私。在这项工作中,我们提出了一个配置文件感知模糊日志(PaOSLo)网络搜索隐私保护协议,该协议减轻了用户在网络搜索中留下的数字痕迹。PaOSLo基于配置文件相似度系统地对用户进行分组。这项工作的主要目的是评估与随机分组相比,系统分组的影响。我们首先计算用户资料之间的相似度,然后使用K-mean算法对用户进行系统的聚类。不讨人喜欢和不可区分性是我们衡量用户隐私的两个维度。为了计算系统分组对用户隐私的影响,我们对PaOSLo的性能进行了实验,并将其与现代分布式协议(如OSLo和UUP)进行了比较。结果表明,在ODP层次结构的最顶层,PaOSLo比上述现代分布式协议分别保留了10%和3%的配置文件隐私。此外,对于任何群组规模和ODP层次结构的每个级别,PaOSLo都有较少的概要暴露。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信