{"title":"Towards neural art-based face de-identification in video data","authors":"K. Brkić, T. Hrkać, I. Sikirić, Z. Kalafatić","doi":"10.1109/SPLIM.2016.7528406","DOIUrl":null,"url":null,"abstract":"We propose a computer vision-based pipeline that enables altering the appearance of faces in videos. Assuming a surveillance scenario, we combine GMM-based background subtraction with an improved version of the GrabCut algorithm to find and segment pedestrians. Independently, we detect faces using a standard face detector. We apply the neural art algorithm, utilizing the responses of a deep neural network to obfuscate the detected faces through style mixing with reference images. The altered faces are combined with the original frames using the extracted pedestrian silhouettes as a guideline. Experimental evaluation indicates that our method has potential in producing de-identified versions of the input frames while preserving the utility of the de-identified data.","PeriodicalId":297318,"journal":{"name":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPLIM.2016.7528406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We propose a computer vision-based pipeline that enables altering the appearance of faces in videos. Assuming a surveillance scenario, we combine GMM-based background subtraction with an improved version of the GrabCut algorithm to find and segment pedestrians. Independently, we detect faces using a standard face detector. We apply the neural art algorithm, utilizing the responses of a deep neural network to obfuscate the detected faces through style mixing with reference images. The altered faces are combined with the original frames using the extracted pedestrian silhouettes as a guideline. Experimental evaluation indicates that our method has potential in producing de-identified versions of the input frames while preserving the utility of the de-identified data.