Towards neural art-based face de-identification in video data

K. Brkić, T. Hrkać, I. Sikirić, Z. Kalafatić
{"title":"Towards neural art-based face de-identification in video data","authors":"K. Brkić, T. Hrkać, I. Sikirić, Z. Kalafatić","doi":"10.1109/SPLIM.2016.7528406","DOIUrl":null,"url":null,"abstract":"We propose a computer vision-based pipeline that enables altering the appearance of faces in videos. Assuming a surveillance scenario, we combine GMM-based background subtraction with an improved version of the GrabCut algorithm to find and segment pedestrians. Independently, we detect faces using a standard face detector. We apply the neural art algorithm, utilizing the responses of a deep neural network to obfuscate the detected faces through style mixing with reference images. The altered faces are combined with the original frames using the extracted pedestrian silhouettes as a guideline. Experimental evaluation indicates that our method has potential in producing de-identified versions of the input frames while preserving the utility of the de-identified data.","PeriodicalId":297318,"journal":{"name":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPLIM.2016.7528406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We propose a computer vision-based pipeline that enables altering the appearance of faces in videos. Assuming a surveillance scenario, we combine GMM-based background subtraction with an improved version of the GrabCut algorithm to find and segment pedestrians. Independently, we detect faces using a standard face detector. We apply the neural art algorithm, utilizing the responses of a deep neural network to obfuscate the detected faces through style mixing with reference images. The altered faces are combined with the original frames using the extracted pedestrian silhouettes as a guideline. Experimental evaluation indicates that our method has potential in producing de-identified versions of the input frames while preserving the utility of the de-identified data.
基于神经艺术的视频数据人脸去识别研究
我们提出了一种基于计算机视觉的管道,可以改变视频中人脸的外观。假设一个监控场景,我们将基于gmm的背景减法与改进版本的GrabCut算法相结合,以发现和分割行人。独立地,我们使用标准的人脸检测器来检测人脸。我们应用神经艺术算法,利用深度神经网络的响应,通过与参考图像的风格混合来混淆检测到的人脸。利用提取的行人轮廓作为指导,将改变后的人脸与原始帧相结合。实验评估表明,我们的方法有潜力产生输入帧的去标识版本,同时保留去标识数据的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信