{"title":"Towards A Visual Programming Tool to Create Deep Learning Models","authors":"Tommaso Calò, Luigi De Russis","doi":"10.1145/3596454.3597181","DOIUrl":null,"url":null,"abstract":"Deep Learning (DL) developers come from different backgrounds, e.g., medicine, genomics, finance, and computer science. To create a DL model, they must learn and use high-level programming languages (e.g., Python), thus needing to handle related setups and solve programming errors. This paper presents DeepBlocks, a visual programming tool that allows DL developers to design, train, and evaluate models without relying on specific programming languages. DeepBlocks works by building on the typical model structure: a sequence of learnable functions whose arrangement defines the specific characteristics of the model. We derived DeepBlocks’ design goals from a 5-participants formative interview, and we validated the first implementation of the tool through a typical use case. Results are promising and show that developers could visually design complex DL architectures.","PeriodicalId":227076,"journal":{"name":"Companion Proceedings of the 2023 ACM SIGCHI Symposium on Engineering Interactive Computing Systems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the 2023 ACM SIGCHI Symposium on Engineering Interactive Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3596454.3597181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Deep Learning (DL) developers come from different backgrounds, e.g., medicine, genomics, finance, and computer science. To create a DL model, they must learn and use high-level programming languages (e.g., Python), thus needing to handle related setups and solve programming errors. This paper presents DeepBlocks, a visual programming tool that allows DL developers to design, train, and evaluate models without relying on specific programming languages. DeepBlocks works by building on the typical model structure: a sequence of learnable functions whose arrangement defines the specific characteristics of the model. We derived DeepBlocks’ design goals from a 5-participants formative interview, and we validated the first implementation of the tool through a typical use case. Results are promising and show that developers could visually design complex DL architectures.