Gammatone wavelet Cepstral Coefficients for robust speech recognition

A. Adiga, Mathew Magimai, C. Seelamantula
{"title":"Gammatone wavelet Cepstral Coefficients for robust speech recognition","authors":"A. Adiga, Mathew Magimai, C. Seelamantula","doi":"10.1109/TENCON.2013.6718948","DOIUrl":null,"url":null,"abstract":"We develop noise robust features using Gammatone wavelets derived from the popular Gammatone functions. These wavelets incorporate the characteristics of human peripheral auditory systems, in particular the spatially-varying frequency response of the basilar membrane. We refer to the new features as Gammatone Wavelet Cepstral Coefficients (GWCC). The procedure involved in extracting GWCC from a speech signal is similar to that of the conventional Mel-Frequency Cepstral Coefficients (MFCC) technique, with the difference being in the type of filterbank used. We replace the conventional mel filterbank in MFCC with a Gammatone wavelet filterbank, which we construct using Gammatone wavelets. We also explore the effect of Gammatone filterbank based features (Gammatone Cepstral Coefficients (GCC)) for robust speech recognition. On AURORA 2 database, a comparison of GWCCs and GCCs with MFCCs shows that Gammatone based features yield a better recognition performance at low SNRs.","PeriodicalId":425023,"journal":{"name":"2013 IEEE International Conference of IEEE Region 10 (TENCON 2013)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference of IEEE Region 10 (TENCON 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2013.6718948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

We develop noise robust features using Gammatone wavelets derived from the popular Gammatone functions. These wavelets incorporate the characteristics of human peripheral auditory systems, in particular the spatially-varying frequency response of the basilar membrane. We refer to the new features as Gammatone Wavelet Cepstral Coefficients (GWCC). The procedure involved in extracting GWCC from a speech signal is similar to that of the conventional Mel-Frequency Cepstral Coefficients (MFCC) technique, with the difference being in the type of filterbank used. We replace the conventional mel filterbank in MFCC with a Gammatone wavelet filterbank, which we construct using Gammatone wavelets. We also explore the effect of Gammatone filterbank based features (Gammatone Cepstral Coefficients (GCC)) for robust speech recognition. On AURORA 2 database, a comparison of GWCCs and GCCs with MFCCs shows that Gammatone based features yield a better recognition performance at low SNRs.
稳健语音识别的伽玛酮小波倒谱系数
我们开发噪声鲁棒性特征使用伽玛通小波衍生自流行的伽玛通函数。这些小波结合了人类外周听觉系统的特征,特别是基底膜的空间变化频率响应。我们将这些新特征称为伽马单小波倒谱系数(GWCC)。从语音信号中提取GWCC的过程与传统的mel -频率倒谱系数(MFCC)技术类似,不同之处在于所使用的滤波器组的类型。我们用Gammatone小波构造的Gammatone小波滤波器组取代了MFCC中传统的mel滤波器组。我们还探讨了基于Gammatone滤波器组的特征(Gammatone倒谱系数(GCC))对鲁棒语音识别的影响。在AURORA 2数据库上,对gwcc、gcc和mfccc进行了比较,结果表明基于Gammatone的特征在低信噪比下具有更好的识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信