A Multiscale and Multidirectional Image Denoising Algorithm Based on Contourlet Transform

Bei Li, Xin Li, Shuxun Wang, Haifeng Li
{"title":"A Multiscale and Multidirectional Image Denoising Algorithm Based on Contourlet Transform","authors":"Bei Li, Xin Li, Shuxun Wang, Haifeng Li","doi":"10.1109/IIH-MSP.2006.19","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel image denoising algorithm in Contourlet domain. The Contourlet transform is adopted by virtual of its advantages over the Wavelet transform in order to obtain a flexible multiresolution, local, and directional image expansion using contour segments, it is good at isolating the smoothness along the contours. We present a weighing factor which submits to the negative exponential distribution, it can combine the hard thresholding function with the soft thresholding, the new thresholding function is continuous[4]. We adapt different thresholdings on different scales and different directions to get better denoising results. Experimental results demonstrate that the proposed algorithm improves the SNR on a certain extent.","PeriodicalId":272579,"journal":{"name":"2006 International Conference on Intelligent Information Hiding and Multimedia","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Intelligent Information Hiding and Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIH-MSP.2006.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper, we propose a novel image denoising algorithm in Contourlet domain. The Contourlet transform is adopted by virtual of its advantages over the Wavelet transform in order to obtain a flexible multiresolution, local, and directional image expansion using contour segments, it is good at isolating the smoothness along the contours. We present a weighing factor which submits to the negative exponential distribution, it can combine the hard thresholding function with the soft thresholding, the new thresholding function is continuous[4]. We adapt different thresholdings on different scales and different directions to get better denoising results. Experimental results demonstrate that the proposed algorithm improves the SNR on a certain extent.
基于Contourlet变换的多尺度多向图像去噪算法
本文提出了一种新的Contourlet域图像去噪算法。基于Contourlet变换相对于小波变换的优点,虚拟机采用Contourlet变换对轮廓段进行灵活的多分辨率、局部和定向的图像展开,它善于隔离沿轮廓的平滑性。我们提出了一个服从负指数分布的权重因子,它可以将硬阈值函数和软阈值函数结合起来,新的阈值函数是连续的[4]。为了得到更好的去噪效果,我们在不同的尺度和方向上采用了不同的阈值。实验结果表明,该算法在一定程度上提高了信噪比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信