Reducing sentiment polarity for demographic attributes in word embeddings using adversarial learning

Chris Sweeney, M. Najafian
{"title":"Reducing sentiment polarity for demographic attributes in word embeddings using adversarial learning","authors":"Chris Sweeney, M. Najafian","doi":"10.1145/3351095.3372837","DOIUrl":null,"url":null,"abstract":"The use of word embedding models in sentiment analysis has gained a lot of traction in the Natural Language Processing (NLP) community. However, many inherently neutral word vectors describing demographic identity have unintended implicit correlations with negative or positive sentiment, resulting in unfair downstream machine learning algorithms. We leverage adversarial learning to decorrelate demographic identity term word vectors with positive or negative sentiment, and re-embed them into the word embeddings. We show that our method effectively minimizes unfair positive/negative sentiment polarity while retaining the semantic accuracy of the word embeddings. Furthermore, we show that our method effectively reduces unfairness in downstream sentiment regression and can be extended to reduce unfairness in toxicity classification tasks.","PeriodicalId":377829,"journal":{"name":"Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3351095.3372837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

The use of word embedding models in sentiment analysis has gained a lot of traction in the Natural Language Processing (NLP) community. However, many inherently neutral word vectors describing demographic identity have unintended implicit correlations with negative or positive sentiment, resulting in unfair downstream machine learning algorithms. We leverage adversarial learning to decorrelate demographic identity term word vectors with positive or negative sentiment, and re-embed them into the word embeddings. We show that our method effectively minimizes unfair positive/negative sentiment polarity while retaining the semantic accuracy of the word embeddings. Furthermore, we show that our method effectively reduces unfairness in downstream sentiment regression and can be extended to reduce unfairness in toxicity classification tasks.
使用对抗性学习减少词嵌入中人口统计属性的情感极性
词嵌入模型在情感分析中的应用在自然语言处理(NLP)领域得到了广泛的关注。然而,许多描述人口身份的固有中性词向量与消极或积极情绪具有意想不到的隐含相关性,从而导致不公平的下游机器学习算法。我们利用对抗性学习来解除与积极或消极情绪相关的人口统计学身份术语词向量,并将其重新嵌入到词嵌入中。我们表明,我们的方法有效地减少了不公平的积极/消极情绪极性,同时保持了词嵌入的语义准确性。此外,我们表明我们的方法可以有效地减少下游情感回归中的不公平性,并可以扩展到减少毒性分类任务中的不公平性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信