A new deterministic algorithm for sparse multivariate polynomial interpolation

M. Bläser, Gorav Jindal
{"title":"A new deterministic algorithm for sparse multivariate polynomial interpolation","authors":"M. Bläser, Gorav Jindal","doi":"10.1145/2608628.2608648","DOIUrl":null,"url":null,"abstract":"We present a deterministic algorithm to interpolate an m-sparse n-variate polynomial which uses poly(n, m, log H, log d) bit operations. Our algorithm works over the integers. Here H is a bound on the magnitude of the coefficient values of the given polynomial. The degree of given polynomial is bounded by d and m is upper bound on number of monomials. This running time is polynomial in the output size. Our algorithm only requires modular black box access to the given polynomial, as introduced in [12]. As an easy consequence, we obtain an algorithm to interpolate polynomials represented by arithmetic circuits.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"C-21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2608648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We present a deterministic algorithm to interpolate an m-sparse n-variate polynomial which uses poly(n, m, log H, log d) bit operations. Our algorithm works over the integers. Here H is a bound on the magnitude of the coefficient values of the given polynomial. The degree of given polynomial is bounded by d and m is upper bound on number of monomials. This running time is polynomial in the output size. Our algorithm only requires modular black box access to the given polynomial, as introduced in [12]. As an easy consequence, we obtain an algorithm to interpolate polynomials represented by arithmetic circuits.
稀疏多元多项式插值的一种新的确定性算法
我们提出了一种确定性算法来插值一个m稀疏的n变量多项式,该多项式使用多(n, m, log H, log d)位运算。我们的算法适用于整数。这里H是给定多项式的系数值的大小的一个界。给定多项式的阶以d为界,m为单项式个数的上界。这个运行时间是输出大小的多项式。我们的算法只需要对给定多项式进行模块化黑盒访问,如[12]所述。作为一个简单的结果,我们得到了一个用算术电路表示多项式的插值算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信