{"title":"A new deterministic algorithm for sparse multivariate polynomial interpolation","authors":"M. Bläser, Gorav Jindal","doi":"10.1145/2608628.2608648","DOIUrl":null,"url":null,"abstract":"We present a deterministic algorithm to interpolate an m-sparse n-variate polynomial which uses poly(n, m, log H, log d) bit operations. Our algorithm works over the integers. Here H is a bound on the magnitude of the coefficient values of the given polynomial. The degree of given polynomial is bounded by d and m is upper bound on number of monomials. This running time is polynomial in the output size. Our algorithm only requires modular black box access to the given polynomial, as introduced in [12]. As an easy consequence, we obtain an algorithm to interpolate polynomials represented by arithmetic circuits.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"C-21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2608648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We present a deterministic algorithm to interpolate an m-sparse n-variate polynomial which uses poly(n, m, log H, log d) bit operations. Our algorithm works over the integers. Here H is a bound on the magnitude of the coefficient values of the given polynomial. The degree of given polynomial is bounded by d and m is upper bound on number of monomials. This running time is polynomial in the output size. Our algorithm only requires modular black box access to the given polynomial, as introduced in [12]. As an easy consequence, we obtain an algorithm to interpolate polynomials represented by arithmetic circuits.