Parallel NoSQL Entity Resolution Approach with MapReduce

Kun Ma, Bo Yang
{"title":"Parallel NoSQL Entity Resolution Approach with MapReduce","authors":"Kun Ma, Bo Yang","doi":"10.1109/INCoS.2015.16","DOIUrl":null,"url":null,"abstract":"To address the limitation of entity resolution of NoSQL documents, we propose a new parallel NoSQL entity resolution approach with MapReduce. Although current MapReduce framework enables efficient parallel execution of entity resolution, it cannot find duplicates in adjacent block easily. Therefore, we investigate possible solutions called Partition-Sort-Map-Reduce to find duplicates by overlapping boundary objects in adjacent blocks. Finally, our experimental evaluation based on NoSQL breeding data and the analysis of time complexity show the high effectiveness and efficiency of the proposed entity resolution approaches.","PeriodicalId":345650,"journal":{"name":"2015 International Conference on Intelligent Networking and Collaborative Systems","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Intelligent Networking and Collaborative Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCoS.2015.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

To address the limitation of entity resolution of NoSQL documents, we propose a new parallel NoSQL entity resolution approach with MapReduce. Although current MapReduce framework enables efficient parallel execution of entity resolution, it cannot find duplicates in adjacent block easily. Therefore, we investigate possible solutions called Partition-Sort-Map-Reduce to find duplicates by overlapping boundary objects in adjacent blocks. Finally, our experimental evaluation based on NoSQL breeding data and the analysis of time complexity show the high effectiveness and efficiency of the proposed entity resolution approaches.
基于MapReduce的并行NoSQL实体解析方法
为了解决NoSQL文档实体解析的局限性,我们提出了一种新的基于MapReduce的并行NoSQL实体解析方法。虽然当前的MapReduce框架能够有效地并行执行实体解析,但它不能很容易地找到相邻块中的重复项。因此,我们研究了可能的解决方案,称为Partition-Sort-Map-Reduce,通过在相邻块中重叠边界对象来查找重复项。最后,基于NoSQL育种数据的实验评估和时间复杂度分析表明,本文提出的实体解析方法具有较高的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信