Collision avoidance dynamics for optimal impulsive collision avoidance maneuvers

R. Abay
{"title":"Collision avoidance dynamics for optimal impulsive collision avoidance maneuvers","authors":"R. Abay","doi":"10.1109/RAST.2017.8002935","DOIUrl":null,"url":null,"abstract":"This paper describes a method to calculate the optimal impulsive maneuver to avoid the collisions using Simplified General Perturbation 4 (SGP4) and Two Line Element (TLE). It also presents a rigorous analysis of the method to investigate the relative dynamics of the two colliding space objects assuming the encounter is instantaneous. Different collision geometries are used for test cases. For all collision geometries, the relative velocity and the relative miss distance vectors are parallel, which is the worst case because the encounter occurs along the direction of the relative velocity vector. Test cases are satellites with distinctive orbital characteristics that are obtained from the official Spacetrack catalog. A precise numerical orbit propagator is used both to create ephemerides for test cases and to evaluate the accuracy of the proposed method. This work is significant because this is the first comprehensive investigation of the relative dynamics of the optimal impulsive collision avoidance maneuvers for satellites. Moreover, the proposed method isn't compute-intensive because it is a semi-numerical method.","PeriodicalId":434418,"journal":{"name":"2017 8th International Conference on Recent Advances in Space Technologies (RAST)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 8th International Conference on Recent Advances in Space Technologies (RAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAST.2017.8002935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper describes a method to calculate the optimal impulsive maneuver to avoid the collisions using Simplified General Perturbation 4 (SGP4) and Two Line Element (TLE). It also presents a rigorous analysis of the method to investigate the relative dynamics of the two colliding space objects assuming the encounter is instantaneous. Different collision geometries are used for test cases. For all collision geometries, the relative velocity and the relative miss distance vectors are parallel, which is the worst case because the encounter occurs along the direction of the relative velocity vector. Test cases are satellites with distinctive orbital characteristics that are obtained from the official Spacetrack catalog. A precise numerical orbit propagator is used both to create ephemerides for test cases and to evaluate the accuracy of the proposed method. This work is significant because this is the first comprehensive investigation of the relative dynamics of the optimal impulsive collision avoidance maneuvers for satellites. Moreover, the proposed method isn't compute-intensive because it is a semi-numerical method.
最优脉冲避碰机动的避碰动力学
本文介绍了一种利用简化一般摄动4 (SGP4)和二线元(TLE)计算避免碰撞的最优脉冲机动的方法。本文还提出了一个严格的分析方法来研究两个碰撞空间物体的相对动力学假设相遇是瞬时的。不同的碰撞几何图形用于测试用例。对于所有的碰撞几何,相对速度和相对脱靶距离向量是平行的,这是最坏的情况,因为碰撞是沿着相对速度向量的方向发生的。测试用例是从Spacetrack官方目录中获得的具有独特轨道特性的卫星。一个精确的数值轨道传播器被用于创建测试用例的星历表和评估所提出方法的准确性。这项工作意义重大,因为这是第一次全面研究卫星最优脉冲避碰机动的相对动力学。此外,该方法是一种半数值方法,计算量较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信