{"title":"Component labeling for k-concave binary images using an FPGA","authors":"Yasuaki Ito, K. Nakano","doi":"10.1109/IPDPS.2008.4536129","DOIUrl":null,"url":null,"abstract":"Connected component labeling is a task that assigns unique IDs to the connected components of a binary image. The main contribution of this paper is to present a hardware connected component labeling algorithm for k-concave binary images designed and implemented in FPGA. Pixels of a binary image are given to the FPGA in raster order, and the resulting labels are also output in the same order. The advantage of our labeling algorithm is small latency and to use a small internal storage of the FPGA. We have implemented our hardware labeling algorithm in an Altera Stratix Family FPGA, and evaluated the performance. The implementation result shows that for a 10-concave binary image of 2048 times 2048, our connected component labeling algorithm runs in approximately 70 ms and its latency is approximately 750 ns.","PeriodicalId":162608,"journal":{"name":"2008 IEEE International Symposium on Parallel and Distributed Processing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Parallel and Distributed Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2008.4536129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Connected component labeling is a task that assigns unique IDs to the connected components of a binary image. The main contribution of this paper is to present a hardware connected component labeling algorithm for k-concave binary images designed and implemented in FPGA. Pixels of a binary image are given to the FPGA in raster order, and the resulting labels are also output in the same order. The advantage of our labeling algorithm is small latency and to use a small internal storage of the FPGA. We have implemented our hardware labeling algorithm in an Altera Stratix Family FPGA, and evaluated the performance. The implementation result shows that for a 10-concave binary image of 2048 times 2048, our connected component labeling algorithm runs in approximately 70 ms and its latency is approximately 750 ns.