Handling imbalance visualized pattern dataset for yield prediction

M. M. Noor, S. Jusoh
{"title":"Handling imbalance visualized pattern dataset for yield prediction","authors":"M. M. Noor, S. Jusoh","doi":"10.1109/ITSIM.2008.4631657","DOIUrl":null,"url":null,"abstract":"The prediction of the yield outcome in a non close loop manufacturing process can be achieved by visualizing the historical data pattern generated from the inspection machine, transform the data pattern and map it into machine learning algorithm for training, in order to automatically generate a prediction model without the visual interpretation needs to be done by human. Anyhow, the nature of manufacturing process dataset for the bad yield outcome is highly skewed where the majority class of good yield extremely outnumbers the minority class of bad yield. Comparison between the undersampling, over- sampling and SMOTE + VDM sampling technique indicates that the combination of SMOTE + VDM and undersampled dataset produced a robust classifier performance capable of handling better with different batches of prediction test data sets. Furtherance, suitable distance function for SMOTE is needed to improve class recall and minimize overfitting whilst different approach on the majority class sampling is required to improve the class precision due to information loss by the undersampling.","PeriodicalId":314159,"journal":{"name":"2008 International Symposium on Information Technology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSIM.2008.4631657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The prediction of the yield outcome in a non close loop manufacturing process can be achieved by visualizing the historical data pattern generated from the inspection machine, transform the data pattern and map it into machine learning algorithm for training, in order to automatically generate a prediction model without the visual interpretation needs to be done by human. Anyhow, the nature of manufacturing process dataset for the bad yield outcome is highly skewed where the majority class of good yield extremely outnumbers the minority class of bad yield. Comparison between the undersampling, over- sampling and SMOTE + VDM sampling technique indicates that the combination of SMOTE + VDM and undersampled dataset produced a robust classifier performance capable of handling better with different batches of prediction test data sets. Furtherance, suitable distance function for SMOTE is needed to improve class recall and minimize overfitting whilst different approach on the majority class sampling is required to improve the class precision due to information loss by the undersampling.
用于产量预测的不平衡可视化模式数据处理
对非闭环制造过程中良率结果的预测,可以通过将检测机生成的历史数据模式可视化,将数据模式转换成映射到机器学习算法中进行训练,从而自动生成预测模型,而无需人工进行可视化解释。无论如何,制造过程数据集的性质对于坏的良率结果是高度倾斜的,其中良率的大多数类别远远超过坏的少数类别。对欠采样、过采样和SMOTE + VDM采样技术的比较表明,SMOTE + VDM与欠采样数据集的结合产生了鲁棒的分类器性能,能够更好地处理不同批次的预测测试数据集。此外,需要适合SMOTE的距离函数来提高类召回率和最小化过拟合,而由于欠采样造成的信息损失,需要对大多数类采样采用不同的方法来提高类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信