Prediction of PM2.5 Concentration Based on CNNLSTM Deep Learning Model

Yuxuan Xie, Xinxin Chen, Lejun Zhang
{"title":"Prediction of PM2.5 Concentration Based on CNNLSTM Deep Learning Model","authors":"Yuxuan Xie, Xinxin Chen, Lejun Zhang","doi":"10.1109/ACEDPI58926.2023.00051","DOIUrl":null,"url":null,"abstract":"Rational prediction of $PM_{2.5}$ concentration can effectively prevent and control atmospheric environmental pollution. To improve the accuracy of short-term $PM_{2.5}$ concentration prediction, the paper proposes a combined CNN-LSTM prediction model combining CNN and LSTM networks. The model first automatically extracts the spatial features of the dataset set using a CNN and a one-dimensional convolutional kernel function, and then uses a multilayer LSTM network to capture the time-dependent features of the sequence, then introduces a Dropout layer and trains the model with the Adam optimization algorithm mechanism to improve the operational efficiency. Finally, a deep neural network with a single hidden layer is used in the fully connected layer to fit and predict the data and output the predicted value. The paper predicts $PM_{2.5}$ concentrations using Beijing air pollutant concentration data and historical meteorological data from 2014-1-1 to 2022-7-5 to fully extract the spatial and temporal characteristics of multivariate nonlinear series. The results show that the optimization of the CNN-LSTM model on the LSTM model can provide a more accurate data basis, which is used in formulating air pollution prevention and control countermeasures.","PeriodicalId":124469,"journal":{"name":"2023 Asia-Europe Conference on Electronics, Data Processing and Informatics (ACEDPI)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Asia-Europe Conference on Electronics, Data Processing and Informatics (ACEDPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACEDPI58926.2023.00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rational prediction of $PM_{2.5}$ concentration can effectively prevent and control atmospheric environmental pollution. To improve the accuracy of short-term $PM_{2.5}$ concentration prediction, the paper proposes a combined CNN-LSTM prediction model combining CNN and LSTM networks. The model first automatically extracts the spatial features of the dataset set using a CNN and a one-dimensional convolutional kernel function, and then uses a multilayer LSTM network to capture the time-dependent features of the sequence, then introduces a Dropout layer and trains the model with the Adam optimization algorithm mechanism to improve the operational efficiency. Finally, a deep neural network with a single hidden layer is used in the fully connected layer to fit and predict the data and output the predicted value. The paper predicts $PM_{2.5}$ concentrations using Beijing air pollutant concentration data and historical meteorological data from 2014-1-1 to 2022-7-5 to fully extract the spatial and temporal characteristics of multivariate nonlinear series. The results show that the optimization of the CNN-LSTM model on the LSTM model can provide a more accurate data basis, which is used in formulating air pollution prevention and control countermeasures.
基于CNNLSTM深度学习模型的PM2.5浓度预测
合理预测PM_{2.5}$浓度可有效防治大气环境污染。为了提高短期$PM_{2.5}$浓度预测的准确性,本文提出了一种结合CNN和LSTM网络的CNN-LSTM组合预测模型。该模型首先使用CNN和一维卷积核函数自动提取数据集的空间特征,然后使用多层LSTM网络捕获序列的时间相关特征,然后引入Dropout层并使用Adam优化算法机制对模型进行训练,以提高运行效率。最后,在全连接层中使用单隐层深度神经网络对数据进行拟合和预测,并输出预测值。本文利用2014年1月1日至2022年7月5日北京市大气污染物浓度数据和历史气象数据对PM_{2.5}$浓度进行预测,充分提取多元非线性序列的时空特征。结果表明,CNN-LSTM模型在LSTM模型上的优化可以提供更准确的数据依据,用于制定大气污染防治对策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信