Understanding the Performance of GPGPU Applications from a Data-Centric View

Hui Zhang, J. Hollingsworth
{"title":"Understanding the Performance of GPGPU Applications from a Data-Centric View","authors":"Hui Zhang, J. Hollingsworth","doi":"10.1109/ProTools49597.2019.00006","DOIUrl":null,"url":null,"abstract":"Using a CPU-GPU hybrid computing framework is becoming a common configuration for supercomputers. The wide deployment of GPUs (as well as other hardware accelerators) brings to the HPC community a big question: Are we using them effectively? Inappropriate use of GPUs can generate incorrect results in certain cases, but more often, will slow down the program instead of speeding it up. This paper describes a tool that satisfies the needs of programmers to analyze the runtime performance of kernels and obtain insights for better GPU utilization. Compared to existing GPU performance tools, ours provides some unique features: data-centric profiling and generating complete GPU call stacks. With the guidance of the tool, we were able to improve the kernel performance of three widely-studied GPU benchmarks by a factor of up to 46.6x with minor code modification.","PeriodicalId":418029,"journal":{"name":"2019 IEEE/ACM International Workshop on Programming and Performance Visualization Tools (ProTools)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM International Workshop on Programming and Performance Visualization Tools (ProTools)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ProTools49597.2019.00006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Using a CPU-GPU hybrid computing framework is becoming a common configuration for supercomputers. The wide deployment of GPUs (as well as other hardware accelerators) brings to the HPC community a big question: Are we using them effectively? Inappropriate use of GPUs can generate incorrect results in certain cases, but more often, will slow down the program instead of speeding it up. This paper describes a tool that satisfies the needs of programmers to analyze the runtime performance of kernels and obtain insights for better GPU utilization. Compared to existing GPU performance tools, ours provides some unique features: data-centric profiling and generating complete GPU call stacks. With the guidance of the tool, we were able to improve the kernel performance of three widely-studied GPU benchmarks by a factor of up to 46.6x with minor code modification.
从数据中心的角度理解GPGPU应用程序的性能
使用CPU-GPU混合计算框架正在成为超级计算机的常见配置。gpu(以及其他硬件加速器)的广泛部署给高性能计算社区带来了一个大问题:我们是否有效地使用了它们?在某些情况下,不恰当地使用gpu可能会产生不正确的结果,但更常见的是,它会减慢程序的速度,而不是加快程序的速度。本文描述了一个工具,它可以满足程序员分析内核运行时性能的需要,并获得更好的GPU利用率的见解。与现有的GPU性能工具相比,我们的工具提供了一些独特的功能:以数据为中心的分析和生成完整的GPU调用堆栈。在该工具的指导下,我们能够通过少量的代码修改将三个广泛研究的GPU基准的内核性能提高46.6倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信