Robust Resampling Methods for Time Series

Lorenzo Camponovo, O. Scaillet, O. Scaillet, F. Trojani, Fabio Trojani
{"title":"Robust Resampling Methods for Time Series","authors":"Lorenzo Camponovo, O. Scaillet, O. Scaillet, F. Trojani, Fabio Trojani","doi":"10.2139/ssrn.1479468","DOIUrl":null,"url":null,"abstract":"We study the robustness of block resampling procedures for time series. We first derive a set of formulas to characterize their quantile breakdown point. For the moving block bootstrap and the subsampling, we find a very low quantile breakdown point. A similar robustness problem arises in relation to data-driven methods for selecting the block size in applications. This renders inference based on standard resampling methods useless already in simple estimation and testing settings. To solve this problem, we introduce a robust fast resampling scheme that is applicable to a wide class of time series settings. Monte Carlo simulations and sensitivity analysis for the simple AR(1) model confirm the dramatic fragility of classical resampling procedures in presence of contaminations by outliers. They also show the better accuracy and efficiency of the robust resampling approach under di®erent types of data constellations. A real data application to testing for stock return predictability shows that our robust approach can detect predictability structures more consistently than classical methods.","PeriodicalId":364869,"journal":{"name":"ERN: Simulation Methods (Topic)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Simulation Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1479468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We study the robustness of block resampling procedures for time series. We first derive a set of formulas to characterize their quantile breakdown point. For the moving block bootstrap and the subsampling, we find a very low quantile breakdown point. A similar robustness problem arises in relation to data-driven methods for selecting the block size in applications. This renders inference based on standard resampling methods useless already in simple estimation and testing settings. To solve this problem, we introduce a robust fast resampling scheme that is applicable to a wide class of time series settings. Monte Carlo simulations and sensitivity analysis for the simple AR(1) model confirm the dramatic fragility of classical resampling procedures in presence of contaminations by outliers. They also show the better accuracy and efficiency of the robust resampling approach under di®erent types of data constellations. A real data application to testing for stock return predictability shows that our robust approach can detect predictability structures more consistently than classical methods.
时间序列的鲁棒重采样方法
研究了时间序列分块重采样方法的鲁棒性。我们首先推导出一组公式来表征它们的分位数击穿点。对于移动块自举和子采样,我们发现了一个非常低的分位数击穿点。在应用程序中选择块大小的数据驱动方法中也出现了类似的健壮性问题。这使得基于标准重采样方法的推理在简单的估计和测试设置中已经无用了。为了解决这个问题,我们引入了一种鲁棒的快速重采样方案,该方案适用于广泛的时间序列设置。简单AR(1)模型的蒙特卡罗模拟和灵敏度分析证实,在存在异常值污染的情况下,经典重采样程序具有显著的脆弱性。它们还表明,在不同类型的数据星座下,鲁棒重采样方法具有更好的精度和效率。测试股票收益可预测性的实际数据应用表明,我们的鲁棒方法可以比经典方法更一致地检测可预测性结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信