Revisiting co-scheduling for upcoming ExaScale systems

Stefan Lankes
{"title":"Revisiting co-scheduling for upcoming ExaScale systems","authors":"Stefan Lankes","doi":"10.1109/HPCSim.2015.7237117","DOIUrl":null,"url":null,"abstract":"Future generation supercomputers will be a hundred times faster than today's leaders of the Top 500 while reaching the exascale mark. It is predicted that this performance gain in terms of CPU power will be achieved by a shift in the ratio of compute nodes to cores per node. The amount of nodes will not grow significantly compared to today's systems, instead they will be built by using many-core CPUs holding more than hundreds of cores resulting in a widening gap between compute power and I/O performance [1]. Four key challenges of future exascale systems have been identified by previous studies that must be coped with when designing them: energy and power, memory and storage, concurrency and locality, and resiliency [2].","PeriodicalId":134009,"journal":{"name":"2015 International Conference on High Performance Computing & Simulation (HPCS)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCSim.2015.7237117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Future generation supercomputers will be a hundred times faster than today's leaders of the Top 500 while reaching the exascale mark. It is predicted that this performance gain in terms of CPU power will be achieved by a shift in the ratio of compute nodes to cores per node. The amount of nodes will not grow significantly compared to today's systems, instead they will be built by using many-core CPUs holding more than hundreds of cores resulting in a widening gap between compute power and I/O performance [1]. Four key challenges of future exascale systems have been identified by previous studies that must be coped with when designing them: energy and power, memory and storage, concurrency and locality, and resiliency [2].
重新考虑即将推出的ExaScale系统的协同调度
未来一代超级计算机的运算速度将达到百亿亿次大关,比当今世界500强中的超级计算机快100倍。据预测,这种CPU功率方面的性能增益将通过计算节点与每个节点的核数之比的变化来实现。与今天的系统相比,节点的数量不会显著增长,相反,它们将通过使用拥有数百个内核的多核cpu来构建,从而导致计算能力和I/O性能之间的差距越来越大[1]。以前的研究已经确定了未来百亿亿级系统在设计时必须应对的四个关键挑战:能量和功率、内存和存储、并发性和局部性以及弹性[2]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信