Comparative analysis of data mining techniques for financial data using parallel processing

S. Qamar, Syed Hasan Adil
{"title":"Comparative analysis of data mining techniques for financial data using parallel processing","authors":"S. Qamar, Syed Hasan Adil","doi":"10.1145/1838002.1838030","DOIUrl":null,"url":null,"abstract":"The purpose of this research paper is to study the application of data mining techniques in risk analysis of financial credit related data. In the first part we will apply data mining techniques like Classification, Decision Trees, Clustering and Association Rule Mining to identify the risk associated with credit related data. The advantages, disadvantages and accuracy of each technique will be identified. In the second part we will scale and optimize the performance of these techniques using parallel computing based on multi-core CPU and GPU (GPGPU) using NVIDIA CUDA based computing framework for General-Purpose computation on GPU. The final outcome of this research is the results of the application of these algorithms and their performance statistics on CPU and GPU.","PeriodicalId":434420,"journal":{"name":"International Conference on Frontiers of Information Technology","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Frontiers of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1838002.1838030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The purpose of this research paper is to study the application of data mining techniques in risk analysis of financial credit related data. In the first part we will apply data mining techniques like Classification, Decision Trees, Clustering and Association Rule Mining to identify the risk associated with credit related data. The advantages, disadvantages and accuracy of each technique will be identified. In the second part we will scale and optimize the performance of these techniques using parallel computing based on multi-core CPU and GPU (GPGPU) using NVIDIA CUDA based computing framework for General-Purpose computation on GPU. The final outcome of this research is the results of the application of these algorithms and their performance statistics on CPU and GPU.
使用并行处理的金融数据挖掘技术的比较分析
本研究的目的是研究数据挖掘技术在金融信贷相关数据风险分析中的应用。在第一部分中,我们将应用数据挖掘技术,如分类、决策树、聚类和关联规则挖掘来识别与信用相关数据相关的风险。将确定每种技术的优点、缺点和准确性。在第二部分中,我们将使用基于多核CPU和GPU (GPGPU)的并行计算来扩展和优化这些技术的性能,使用基于NVIDIA CUDA的计算框架在GPU上进行通用计算。本研究的最终结果是这些算法的应用结果及其在CPU和GPU上的性能统计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信