New approach to determine the optimal number of clusters K in unsupervised classification

Oussama Chabih, Sara Sbai, Hicham Behja, Mohammed Reda Chbihi Louhdi, E. Zemmouri, B. Trousse
{"title":"New approach to determine the optimal number of clusters K in unsupervised classification","authors":"Oussama Chabih, Sara Sbai, Hicham Behja, Mohammed Reda Chbihi Louhdi, E. Zemmouri, B. Trousse","doi":"10.1109/CiSt49399.2021.9357249","DOIUrl":null,"url":null,"abstract":"One of the most common problems in the field of information processing is the definition of the optimal number of clusters when using unsupervised classification. The wrong choice of the number of clusters leads to insignificant and inconsistent results. In this paper, we present a simple automatic technique for estimating the optimal number of clusters when using a classification algorithm based on k-means. The proposed algorithm is based on detecting the immutable clusters during the different experiments and takes them as a reference in order to specify the best classification.","PeriodicalId":253233,"journal":{"name":"2020 6th IEEE Congress on Information Science and Technology (CiSt)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th IEEE Congress on Information Science and Technology (CiSt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CiSt49399.2021.9357249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

One of the most common problems in the field of information processing is the definition of the optimal number of clusters when using unsupervised classification. The wrong choice of the number of clusters leads to insignificant and inconsistent results. In this paper, we present a simple automatic technique for estimating the optimal number of clusters when using a classification algorithm based on k-means. The proposed algorithm is based on detecting the immutable clusters during the different experiments and takes them as a reference in order to specify the best classification.
确定无监督分类中最优簇数K的新方法
在信息处理领域中,最常见的问题之一是在使用无监督分类时如何定义最佳聚类数量。错误的簇数选择会导致不显著和不一致的结果。在本文中,我们提出了一种简单的自动技术,用于在使用基于k-means的分类算法时估计最佳簇数。该算法基于对不同实验中不可变聚类的检测,并以此为参考来确定最佳分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信