Polarimetric SAR images classification based on L distribution and spatial context

Qiao Xu, Qihao Chen, Xiaoli Xing, Shuai Yang, Xiuguo Liu
{"title":"Polarimetric SAR images classification based on L distribution and spatial context","authors":"Qiao Xu, Qihao Chen, Xiaoli Xing, Shuai Yang, Xiuguo Liu","doi":"10.1109/IGARSS.2016.7730298","DOIUrl":null,"url":null,"abstract":"To obtain accurate classification results of polarimetric SAR images in different heterogeneity areas, a novel unsupervised classification method is proposed, which combines an advanced distribution with spatial contextual information based on stochastic expectation maximization (SEM) algorithm. Specifically, the probabilities of class membership are calculated by L distribution, and a neighborhood function is defined to describe spatial contextual information. Then the probabilities of class membership are altered by the predefined neighborhood function via probabilistic label relaxation (PLR) technique. Moreover, RADARSAT-2 and EMISAR data are used to verify the effectiveness of the proposed method. The experiment results show it can accurately classify different heterogeneity areas and obtain more consistent results compared with other algorithms.","PeriodicalId":179622,"journal":{"name":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2016.7730298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

To obtain accurate classification results of polarimetric SAR images in different heterogeneity areas, a novel unsupervised classification method is proposed, which combines an advanced distribution with spatial contextual information based on stochastic expectation maximization (SEM) algorithm. Specifically, the probabilities of class membership are calculated by L distribution, and a neighborhood function is defined to describe spatial contextual information. Then the probabilities of class membership are altered by the predefined neighborhood function via probabilistic label relaxation (PLR) technique. Moreover, RADARSAT-2 and EMISAR data are used to verify the effectiveness of the proposed method. The experiment results show it can accurately classify different heterogeneity areas and obtain more consistent results compared with other algorithms.
基于L分布和空间背景的极化SAR图像分类
为了获得不同异质性区域极化SAR图像的准确分类结果,提出了一种基于随机期望最大化(SEM)算法的无监督分类方法,该方法将高级分布与空间上下文信息相结合。具体而言,通过L分布计算类隶属度的概率,并定义一个邻域函数来描述空间上下文信息。然后通过概率标签松弛(PLR)技术,利用预定义的邻域函数改变类隶属度的概率。此外,利用RADARSAT-2和EMISAR数据验证了所提方法的有效性。实验结果表明,与其他算法相比,该算法能够准确地对不同的异质性区域进行分类,并获得更一致的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信