Adaptive Coherent Sampling for Network Delay Measurement

Shuo Liu, Qiaoling Wang
{"title":"Adaptive Coherent Sampling for Network Delay Measurement","authors":"Shuo Liu, Qiaoling Wang","doi":"10.1109/ICC40277.2020.9149155","DOIUrl":null,"url":null,"abstract":"End-to-end network delay, as a metric to indicate the QoS (Quality-of-Service), plays an important role in distributed services. Unfortunately, it is infeasible in practice to know all node-pair delay information due to the quadratic growth of overhead by active probing. In this paper, we leverage the stateof-the-art matrix completion technology for better network delay estimation from limited measurements. Although the number of samples required for exact matrix completion is theoretically bounded, it is practically less helpful as the number cannot be specified. This motivates us to propose an adaptive coherent sampling algorithm to select the elements with larger leverage scores to maintain the characteristic of important rows or columns in the delay matrix. The number of samples is adaptively determined by a proposed stopping criterion. Simulation results based on real-world network delay datasets indicate that our proposed algorithm is capable of providing better performance (improves estimation error by 16.9% and convergence stress by 28.9%) at less cost (reduces number of samples by 3.9% and processing time by 78.6%) than traditionally used algorithms.","PeriodicalId":106560,"journal":{"name":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC40277.2020.9149155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

End-to-end network delay, as a metric to indicate the QoS (Quality-of-Service), plays an important role in distributed services. Unfortunately, it is infeasible in practice to know all node-pair delay information due to the quadratic growth of overhead by active probing. In this paper, we leverage the stateof-the-art matrix completion technology for better network delay estimation from limited measurements. Although the number of samples required for exact matrix completion is theoretically bounded, it is practically less helpful as the number cannot be specified. This motivates us to propose an adaptive coherent sampling algorithm to select the elements with larger leverage scores to maintain the characteristic of important rows or columns in the delay matrix. The number of samples is adaptively determined by a proposed stopping criterion. Simulation results based on real-world network delay datasets indicate that our proposed algorithm is capable of providing better performance (improves estimation error by 16.9% and convergence stress by 28.9%) at less cost (reduces number of samples by 3.9% and processing time by 78.6%) than traditionally used algorithms.
网络时延测量的自适应相干采样
端到端网络时延作为衡量服务质量(QoS)的指标,在分布式服务中起着重要的作用。不幸的是,由于主动探测开销的二次增长,在实际应用中不可能知道所有的节点对延迟信息。在本文中,我们利用最先进的矩阵补全技术从有限的测量中获得更好的网络延迟估计。虽然精确的矩阵补全所需的样本数量在理论上是有限的,但实际上它的帮助不大,因为数量不能指定。这促使我们提出一种自适应相干采样算法,选择具有较大杠杆分数的元素来保持延迟矩阵中重要行或列的特征。通过提出的停止准则自适应地确定样本的数量。基于真实网络延迟数据集的仿真结果表明,我们提出的算法能够以更低的成本(减少3.9%的样本数量和78.6%的处理时间)提供比传统算法更好的性能(将估计误差提高16.9%,收敛应力提高28.9%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信