Analisis Sentimen dari Aplikasi Shopee Indonesia Menggunakan Metode Recurrent Neural Network

H. Utami
{"title":"Analisis Sentimen dari Aplikasi Shopee Indonesia Menggunakan Metode Recurrent Neural Network","authors":"H. Utami","doi":"10.13057/ijas.v5i1.56825","DOIUrl":null,"url":null,"abstract":"Sentiment analysis on unbalanced data will cause classification errors where the classification results tend to be in the majority class. Therefore, it is necessary to handle unbalanced data. In this study, a combination of synthetic minority oversampling technique (SMOTE) and Tomek link methods will be used to handle unbalanced data. In this study, we use the Recurrent Neural Network (RNN) method to analyze the sentiment of Shopee application users based on review data. Shopee Indonesia application review data shows that around 80% of Shopee application users have positive sentiments and 20% have negative sentiments, which means the data is not balance. In this study, preprocessing process with combination of synthetic minority oversampling technique (SMOTE) and Tomek link method used to handle the condition. The performance of the result is quite good, namely 80% accuracy, 84.1% precision, 92.5% sensitivity, 30% specificity, and 88.1% F1-score. It is better than performance of sentiment analysis that without preprocessing to handle imbalanced data.Keywords: sentiment analysis; imbalanced data; Tomek link; SMOTE; RNN","PeriodicalId":112023,"journal":{"name":"Indonesian Journal of Applied Statistics","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Applied Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13057/ijas.v5i1.56825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Sentiment analysis on unbalanced data will cause classification errors where the classification results tend to be in the majority class. Therefore, it is necessary to handle unbalanced data. In this study, a combination of synthetic minority oversampling technique (SMOTE) and Tomek link methods will be used to handle unbalanced data. In this study, we use the Recurrent Neural Network (RNN) method to analyze the sentiment of Shopee application users based on review data. Shopee Indonesia application review data shows that around 80% of Shopee application users have positive sentiments and 20% have negative sentiments, which means the data is not balance. In this study, preprocessing process with combination of synthetic minority oversampling technique (SMOTE) and Tomek link method used to handle the condition. The performance of the result is quite good, namely 80% accuracy, 84.1% precision, 92.5% sensitivity, 30% specificity, and 88.1% F1-score. It is better than performance of sentiment analysis that without preprocessing to handle imbalanced data.Keywords: sentiment analysis; imbalanced data; Tomek link; SMOTE; RNN
使用神经回路分析印尼Shopee应用程序的情绪
对不平衡数据进行情感分析会导致分类错误,分类结果趋向于多数类。因此,需要对不平衡数据进行处理。在本研究中,将使用合成少数过采样技术(SMOTE)和Tomek链路方法相结合的方法来处理不平衡数据。在本研究中,我们使用递归神经网络(RNN)方法来分析Shopee应用程序用户基于评论数据的情感。Shopee Indonesia的应用测评数据显示,大约80%的Shopee应用用户有正面评价,20%的用户有负面评价,这意味着数据不平衡。在本研究中,预处理过程结合了合成少数派过采样技术(SMOTE)和Tomek链接法来处理条件。结果显示准确率为80%,精密度为84.1%,灵敏度为92.5%,特异性为30%,f1评分为88.1%。在处理不平衡数据时,其性能优于未经预处理的情感分析。关键词:情感分析;不平衡数据;Tomek联系;击杀;RNN
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信