Evaluating storage systems for scientific data in the cloud

K. Maheshwari, J. Wozniak, Hao Yang, D. Katz, M. Ripeanu, V. Zavala, M. Wilde
{"title":"Evaluating storage systems for scientific data in the cloud","authors":"K. Maheshwari, J. Wozniak, Hao Yang, D. Katz, M. Ripeanu, V. Zavala, M. Wilde","doi":"10.1145/2608029.2608034","DOIUrl":null,"url":null,"abstract":"Infrastructure-as-a-Service (IaaS) clouds are an appealing resource for scientific computing. However, the bare-bones presentation of raw Linux virtual machines leaves much to the application developer. For many cloud applications, effective data handling is critical to efficient application execution. This paper investigates the capabilities of a variety of POSIX-accessible distributed storage systems to manage data access patterns resulting from workflow application executions in the cloud. We leverage the expressivity of the Swift parallel scripting framework to benchmark the performance of a number of storage systems using synthetic workloads and three real-world applications. We characterize two representative commercial storage systems (Amazon S3 and HDFS, respectively) and two emerging research-based storage systems (Chirp/Parrot and MosaStore). We find the use of aggregated node-local resources effective and economical compared with remotely located S3 storage. Our experiments show that applications run at scale with MosaStore show up to 30\\% improvement in makespan time compared with those run with S3. We also find that storage-system driven application deployments in the cloud results in better runtime performance compared with an on-demand data-staging driven approach.","PeriodicalId":443577,"journal":{"name":"Scientific Cloud Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608029.2608034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Infrastructure-as-a-Service (IaaS) clouds are an appealing resource for scientific computing. However, the bare-bones presentation of raw Linux virtual machines leaves much to the application developer. For many cloud applications, effective data handling is critical to efficient application execution. This paper investigates the capabilities of a variety of POSIX-accessible distributed storage systems to manage data access patterns resulting from workflow application executions in the cloud. We leverage the expressivity of the Swift parallel scripting framework to benchmark the performance of a number of storage systems using synthetic workloads and three real-world applications. We characterize two representative commercial storage systems (Amazon S3 and HDFS, respectively) and two emerging research-based storage systems (Chirp/Parrot and MosaStore). We find the use of aggregated node-local resources effective and economical compared with remotely located S3 storage. Our experiments show that applications run at scale with MosaStore show up to 30\% improvement in makespan time compared with those run with S3. We also find that storage-system driven application deployments in the cloud results in better runtime performance compared with an on-demand data-staging driven approach.
评估云中的科学数据存储系统
基础设施即服务(IaaS)云是科学计算的一种吸引人的资源。但是,原始Linux虚拟机的基本表示方式给应用程序开发人员留下了很大的空间。对于许多云应用程序,有效的数据处理对于有效的应用程序执行至关重要。本文研究了各种posix可访问的分布式存储系统在管理云中工作流应用程序执行产生的数据访问模式方面的能力。我们利用Swift并行脚本框架的表现力,使用合成工作负载和三个实际应用程序对许多存储系统的性能进行基准测试。我们描述了两个代表性的商业存储系统(分别是Amazon S3和HDFS)和两个新兴的基于研究的存储系统(Chirp/Parrot和MosaStore)。我们发现,与远程S3存储相比,聚合节点本地资源的使用既有效又经济。我们的实验表明,与使用S3运行的应用程序相比,使用MosaStore运行的应用程序的完工时间提高了30%。我们还发现,与按需数据分期驱动的方法相比,在云中部署存储系统驱动的应用程序可以获得更好的运行时性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信