Higher genus FJRW invariants of a Fermat cubic

Jun Li, Yefeng Shen, Jie Zhou
{"title":"Higher genus FJRW invariants of a Fermat cubic","authors":"Jun Li, Yefeng Shen, Jie Zhou","doi":"10.2140/gt.2023.27.1845","DOIUrl":null,"url":null,"abstract":"We reconstruct the all-genus Fan-Jarvis-Ruan-Witten invariants of a Fermat cubic Landau-Ginzburg space $(x_1^3+x_2^3+x_3^3: [\\mathbb{C}^3/ \\mathbold{\\mu}_3]\\to \\mathbb{C})$ from genus-one primary invariants, using tautological relations and axioms of Cohomological Field Theories. These genus-one invariants satisfy a Chazy equation by the Belorousski-Pandharipande relation. They are completely determined by a single genus-one invariant, which can be obtained from cosection localization and intersection theory on moduli of three spin curves. We solve an all-genus Landau-Ginzburg/Calabi-Yau Correspondence Conjecture for the Fermat cubic Landau-Ginzburg space using Cayley transformation on quasi-modular forms. This transformation relates two non-semisimple CohFT theories: the Fan-Jarvis-Ruan-Witten theory of the Fermat cubic polynomial and the Gromov-Witten theory of the Fermat cubic curve. As a consequence, Fan-Jarvis-Ruan-Witten invariants at any genus can be computed using Gromov-Witten invariants of the elliptic curve. They also satisfy nice structures including holomorphic anomaly equations and Virasoro constraints.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2023.27.1845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We reconstruct the all-genus Fan-Jarvis-Ruan-Witten invariants of a Fermat cubic Landau-Ginzburg space $(x_1^3+x_2^3+x_3^3: [\mathbb{C}^3/ \mathbold{\mu}_3]\to \mathbb{C})$ from genus-one primary invariants, using tautological relations and axioms of Cohomological Field Theories. These genus-one invariants satisfy a Chazy equation by the Belorousski-Pandharipande relation. They are completely determined by a single genus-one invariant, which can be obtained from cosection localization and intersection theory on moduli of three spin curves. We solve an all-genus Landau-Ginzburg/Calabi-Yau Correspondence Conjecture for the Fermat cubic Landau-Ginzburg space using Cayley transformation on quasi-modular forms. This transformation relates two non-semisimple CohFT theories: the Fan-Jarvis-Ruan-Witten theory of the Fermat cubic polynomial and the Gromov-Witten theory of the Fermat cubic curve. As a consequence, Fan-Jarvis-Ruan-Witten invariants at any genus can be computed using Gromov-Witten invariants of the elliptic curve. They also satisfy nice structures including holomorphic anomaly equations and Virasoro constraints.
费马三次的高属FJRW不变量
利用同调场论的重义关系和公理,重构了Fermat三次Landau-Ginzburg空间$(x_1^3+x_2^3+x_3^3: [\mathbb{C}^3/ \mathbold{\mu}_3]\到\mathbb{C})$的全属不变量。这些属1不变量通过Belorousski-Pandharipande关系满足Chazy方程。它们完全由单属一不变量确定,该不变量可由三个自旋曲线模的共截面局部化和交理论得到。利用拟模形式上的Cayley变换,求解了Fermat三次Landau-Ginzburg空间的一个全属Landau-Ginzburg/Calabi-Yau对应猜想。这个变换涉及两个非半简单的CohFT理论:费马三次多项式的fan - jarvis -阮恩-威腾理论和费马三次曲线的gromov -威腾理论。因此,可以利用椭圆曲线的Gromov-Witten不变量计算任意格上的fan - jarvis - run - witten不变量。它们还满足包括全纯异常方程和Virasoro约束在内的良好结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信