A survey of transaction dada anonymous publication

Lan Sun, Yilei Wang, Yingjie Wu
{"title":"A survey of transaction dada anonymous publication","authors":"Lan Sun, Yilei Wang, Yingjie Wu","doi":"10.1109/ISRA.2012.6219169","DOIUrl":null,"url":null,"abstract":"Transaction data contain a large amount of information of individuals and entities. Publication of these data can provide important resources for researching such as association rule mining, recommendation systems and user behavior prediction ect. But on the other hand, it will compromise individual privacy. Recently, many works focus on privacy preserving transaction data publishing, especially on anonymous publishing. In this paper, we will systematically summarize and evaluate different anonymous approaches for transactional data publication.","PeriodicalId":266930,"journal":{"name":"2012 IEEE Symposium on Robotics and Applications (ISRA)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Symposium on Robotics and Applications (ISRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISRA.2012.6219169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Transaction data contain a large amount of information of individuals and entities. Publication of these data can provide important resources for researching such as association rule mining, recommendation systems and user behavior prediction ect. But on the other hand, it will compromise individual privacy. Recently, many works focus on privacy preserving transaction data publishing, especially on anonymous publishing. In this paper, we will systematically summarize and evaluate different anonymous approaches for transactional data publication.
交易数据匿名发表调查
交易数据包含了大量的个人和实体信息。这些数据的发布可以为关联规则挖掘、推荐系统和用户行为预测等研究提供重要的资源。但另一方面,它会损害个人隐私。近年来,许多研究都集中在保护隐私的交易数据发布,特别是匿名发布方面。在本文中,我们将系统地总结和评估交易数据发布的不同匿名方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信