Question classification with log-linear models

Phil Blunsom, K. Kocik, J. Curran
{"title":"Question classification with log-linear models","authors":"Phil Blunsom, K. Kocik, J. Curran","doi":"10.1145/1148170.1148282","DOIUrl":null,"url":null,"abstract":"Question classification has become a crucial step in modern question answering systems. Previous work has demonstrated the effectiveness of statistical machine learning approaches to this problem. This paper presents a new approach to building a question classifier using log-linear models. Evidence from a rich and diverse set of syntactic and semantic features is evaluated, as well as approaches which exploit the hierarchical structure of the question classes.","PeriodicalId":433366,"journal":{"name":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1148170.1148282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

Abstract

Question classification has become a crucial step in modern question answering systems. Previous work has demonstrated the effectiveness of statistical machine learning approaches to this problem. This paper presents a new approach to building a question classifier using log-linear models. Evidence from a rich and diverse set of syntactic and semantic features is evaluated, as well as approaches which exploit the hierarchical structure of the question classes.
用对数线性模型进行问题分类
问题分类已经成为现代问答系统中至关重要的一步。以前的工作已经证明了统计机器学习方法在这个问题上的有效性。本文提出了一种利用对数线性模型构建问题分类器的新方法。来自丰富多样的句法和语义特征的证据被评估,以及利用问题类的层次结构的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信