Performance modelling and analysis of mapreduce/hadoop workloads

Xiao Yu, Wei Li
{"title":"Performance modelling and analysis of mapreduce/hadoop workloads","authors":"Xiao Yu, Wei Li","doi":"10.1109/LANMAN.2015.7114723","DOIUrl":null,"url":null,"abstract":"Data center is the infrastructure in big data processing, which constructs computing platform by distributed computer. The paper aims to investigate the analytical model by adopting queueing theory in data center of big data. The new queueing model developed fits the MapReduce programming model accurately and discovers the nature of the programming model. The utilizations and mean waiting times of Mapper and Reducer are obtained respectively. The effect of workload (and number of Mapper slots) on the system performance (i.e., utilization) is exposed. The significance of this paper is it explores the theoretical insight of the MapReduce programming model and provides the optimal parameter recommendation for computing resource configuration.","PeriodicalId":193630,"journal":{"name":"The 21st IEEE International Workshop on Local and Metropolitan Area Networks","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 21st IEEE International Workshop on Local and Metropolitan Area Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LANMAN.2015.7114723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Data center is the infrastructure in big data processing, which constructs computing platform by distributed computer. The paper aims to investigate the analytical model by adopting queueing theory in data center of big data. The new queueing model developed fits the MapReduce programming model accurately and discovers the nature of the programming model. The utilizations and mean waiting times of Mapper and Reducer are obtained respectively. The effect of workload (and number of Mapper slots) on the system performance (i.e., utilization) is exposed. The significance of this paper is it explores the theoretical insight of the MapReduce programming model and provides the optimal parameter recommendation for computing resource configuration.
mapreduce/hadoop工作负载的性能建模和分析
数据中心是大数据处理的基础设施,通过分布式计算机构建计算平台。本文旨在研究在大数据数据中心应用排队理论的分析模型。所建立的队列模型与MapReduce编程模型吻合较好,揭示了MapReduce编程模型的本质。得到了Mapper和Reducer的利用率和平均等待时间。暴露了工作负载(和Mapper插槽的数量)对系统性能(即利用率)的影响。本文的意义在于探索了MapReduce编程模型的理论洞见,并为计算资源配置提供了最优参数推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信