Heterogeneous Graph Neural Network-based Imitation Learning for Gate Sizing Acceleration

Xinyi Zhou, Junjie Ye, Chak-Wa Pui, Kun Shao, Guangliang Zhang, Bin Wang, Jianye Hao, Guangyong Chen, P. Heng
{"title":"Heterogeneous Graph Neural Network-based Imitation Learning for Gate Sizing Acceleration","authors":"Xinyi Zhou, Junjie Ye, Chak-Wa Pui, Kun Shao, Guangliang Zhang, Bin Wang, Jianye Hao, Guangyong Chen, P. Heng","doi":"10.1145/3508352.3549361","DOIUrl":null,"url":null,"abstract":"Gate Sizing is an important step in logic synthesis, where the cells are resized to optimize metrics such as area, timing, power, leakage, etc. In this work, we consider the gate sizing problem for leakage power optimization with timing constraints. Lagrangian Relaxation is a widely employed optimization method for gate sizing problems. We accelerate Lagrangian Relaxation-based algorithms by narrowing down the range of cells to resize. In particular, we formulate a heterogeneous directed graph to represent the timing graph, propose a heterogeneous graph neural network as the encoder, and train in the way of imitation learning to mimic the selection behavior of each iteration in Lagrangian Relaxation. This network is used to predict the set of cells that need to be changed during the optimization process of Lagrangian Relaxation. Experiments show that our accelerated gate sizer could achieve comparable performance to the baseline with an average of 22.5% runtime reduction.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Gate Sizing is an important step in logic synthesis, where the cells are resized to optimize metrics such as area, timing, power, leakage, etc. In this work, we consider the gate sizing problem for leakage power optimization with timing constraints. Lagrangian Relaxation is a widely employed optimization method for gate sizing problems. We accelerate Lagrangian Relaxation-based algorithms by narrowing down the range of cells to resize. In particular, we formulate a heterogeneous directed graph to represent the timing graph, propose a heterogeneous graph neural network as the encoder, and train in the way of imitation learning to mimic the selection behavior of each iteration in Lagrangian Relaxation. This network is used to predict the set of cells that need to be changed during the optimization process of Lagrangian Relaxation. Experiments show that our accelerated gate sizer could achieve comparable performance to the baseline with an average of 22.5% runtime reduction.
基于异构图神经网络的门尺寸加速模仿学习
栅极尺寸是逻辑合成中的一个重要步骤,其中单元调整大小以优化诸如面积,时序,功率,泄漏等指标。本文研究了具有时序约束的泄漏功率优化的栅极尺寸问题。拉格朗日松弛法是一种应用广泛的闸门尺寸优化方法。我们通过缩小单元的范围来调整大小来加速基于拉格朗日松弛的算法。特别地,我们提出了一个异构有向图来表示时序图,提出了一个异构图神经网络作为编码器,并以模仿学习的方式进行训练,模拟拉格朗日松弛中每次迭代的选择行为。该网络用于预测拉格朗日松弛优化过程中需要改变的单元集。实验表明,我们的加速门尺寸器可以达到与基线相当的性能,平均运行时间减少22.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信