Comparing Autonomic Physiological and Electroencephalography Features for VR Sickness Detection Using Predictive Models

Gang Li, Ogechi Onuoha, Mark Mcgill, S. Brewster, C. Chen, F. Pollick
{"title":"Comparing Autonomic Physiological and Electroencephalography Features for VR Sickness Detection Using Predictive Models","authors":"Gang Li, Ogechi Onuoha, Mark Mcgill, S. Brewster, C. Chen, F. Pollick","doi":"10.1109/SSCI50451.2021.9660126","DOIUrl":null,"url":null,"abstract":"How the performance of autonomic physiological, and human vestibular network (HVN)-based brain functional connectivity (BFC) features differ in a virtual reality (VR) sickness classification task is underexplored. Therefore, this paper presents an artificial intelligence (AI)-aided comparative study of the two. Results from different AI models all show that autonomic physiological features represented by the combined heart rate, fingertip temperature and forehead temperature are superior to HVN-based BFC features represented by the phase-locking values of inter-electrode coherence (IEC) of electroencephalogram (EEG) in the same VR sickness condition (that is, as a result of experiencing tunnel travel-induced illusory self-motion (vection) about moving in-depth in this study). Regarding EEG features per se (IEC-BFC vs traditional power spectrum), we did not find much difference across AI models.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9660126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

How the performance of autonomic physiological, and human vestibular network (HVN)-based brain functional connectivity (BFC) features differ in a virtual reality (VR) sickness classification task is underexplored. Therefore, this paper presents an artificial intelligence (AI)-aided comparative study of the two. Results from different AI models all show that autonomic physiological features represented by the combined heart rate, fingertip temperature and forehead temperature are superior to HVN-based BFC features represented by the phase-locking values of inter-electrode coherence (IEC) of electroencephalogram (EEG) in the same VR sickness condition (that is, as a result of experiencing tunnel travel-induced illusory self-motion (vection) about moving in-depth in this study). Regarding EEG features per se (IEC-BFC vs traditional power spectrum), we did not find much difference across AI models.
利用预测模型比较VR疾病检测的自主生理学和脑电图特征
自主神经生理和基于人类前庭网络(HVN)的脑功能连接(BFC)特征在虚拟现实(VR)疾病分类任务中的表现差异尚不清楚。因此,本文在人工智能(AI)的辅助下对两者进行了比较研究。不同AI模型的结果均表明,在相同的VR疾病状态下(即本研究中由于经历了隧道旅行引起的关于深度移动的虚幻自我运动(vection)),以心率、指尖温度和前额温度组合为代表的自主生理特征优于以脑电图(EEG)电极间相干(IEC)锁相值为代表的基于hvr的BFC特征。关于EEG特征本身(IEC-BFC与传统功率谱),我们没有发现人工智能模型之间有太大差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信