Chinese dialect identification using clustered support vector machine

Gu Mingliang, Xia Yuguo
{"title":"Chinese dialect identification using clustered support vector machine","authors":"Gu Mingliang, Xia Yuguo","doi":"10.1109/ICNNSP.2008.4590380","DOIUrl":null,"url":null,"abstract":"This paper presents a novel Chinese dialect identification method to solve the poor decision ability existed in most dialect identification system. The new method firstly uses Gaussian mixture models and n-gram language models to produce a global language feature, and makes decision using clustered support vector machine. The experimental results show that the new method not only raises correct identification rate greatly, but also improves the robust of the system.","PeriodicalId":250993,"journal":{"name":"2008 International Conference on Neural Networks and Signal Processing","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Neural Networks and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNNSP.2008.4590380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents a novel Chinese dialect identification method to solve the poor decision ability existed in most dialect identification system. The new method firstly uses Gaussian mixture models and n-gram language models to produce a global language feature, and makes decision using clustered support vector machine. The experimental results show that the new method not only raises correct identification rate greatly, but also improves the robust of the system.
基于聚类支持向量机的汉语方言识别
针对目前大多数方言识别系统存在的决策能力差的问题,提出了一种新的汉语方言识别方法。该方法首先利用高斯混合模型和n-gram语言模型生成全局语言特征,然后利用聚类支持向量机进行决策。实验结果表明,新方法不仅大大提高了系统的正确率,而且提高了系统的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信