Measuring Text-to-SQL Semantic Parsing Model on the Question Generalizability

Thanakrit Julavanich, Akiko Aizawa
{"title":"Measuring Text-to-SQL Semantic Parsing Model on the Question Generalizability","authors":"Thanakrit Julavanich, Akiko Aizawa","doi":"10.1145/3582768.3582782","DOIUrl":null,"url":null,"abstract":"One of the challenges in NLP tasks, such as text-to-SQL semantic parsing, is generalization. In the text-to-SQL task, having separate training and testing data can measure one aspect of the generalization: how well the model generalizes to unseen databases. Other aspects, however, remain unaccounted for. We propose a new dataset and a more challenging and thorough evaluation process that focuses on the two challenges of generalizing the text-to-SQL model: database content references and question patterns. We create SPIDER-QG, an augmented dataset that employs three techniques, to assess generalizability. First, we replace the set of values in the existing test set with other values from the same column in the same database. Second, we use the synonym of each value as a replacement instead. Third, we generate new questions for the existing SQL query by back-translating the original question. Our evaluation setup demonstrates the generalization challenges and struggles of the current models.","PeriodicalId":315721,"journal":{"name":"Proceedings of the 2022 6th International Conference on Natural Language Processing and Information Retrieval","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Natural Language Processing and Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3582768.3582782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the challenges in NLP tasks, such as text-to-SQL semantic parsing, is generalization. In the text-to-SQL task, having separate training and testing data can measure one aspect of the generalization: how well the model generalizes to unseen databases. Other aspects, however, remain unaccounted for. We propose a new dataset and a more challenging and thorough evaluation process that focuses on the two challenges of generalizing the text-to-SQL model: database content references and question patterns. We create SPIDER-QG, an augmented dataset that employs three techniques, to assess generalizability. First, we replace the set of values in the existing test set with other values from the same column in the same database. Second, we use the synonym of each value as a replacement instead. Third, we generate new questions for the existing SQL query by back-translating the original question. Our evaluation setup demonstrates the generalization challenges and struggles of the current models.
基于问题泛化性的文本到sql语义解析模型度量
NLP任务(如文本到sql的语义解析)中的挑战之一是泛化。在文本到sql的任务中,拥有单独的训练和测试数据可以衡量泛化的一个方面:模型泛化到不可见的数据库的效果如何。然而,其他方面仍未得到解释。我们提出了一个新的数据集和一个更具挑战性和全面的评估过程,重点关注文本到sql模型泛化的两个挑战:数据库内容引用和问题模式。我们创建了SPIDER-QG,这是一个采用三种技术的增强数据集,以评估泛化性。首先,我们用来自同一数据库中同一列的其他值替换现有测试集中的值集。其次,我们使用每个值的同义词作为替换。第三,我们通过反翻译原始问题为现有SQL查询生成新问题。我们的评估设置展示了当前模型的泛化挑战和挣扎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信