Rotation distortions for improvement in face recognition with PCNC

Z. Cruz Monterrosas, T. Baidyk, E. Kussul, A. J. Ibarra Gallardo
{"title":"Rotation distortions for improvement in face recognition with PCNC","authors":"Z. Cruz Monterrosas, T. Baidyk, E. Kussul, A. J. Ibarra Gallardo","doi":"10.1109/IWOBI.2014.6913937","DOIUrl":null,"url":null,"abstract":"The face recognition is a very important task in security (airports, institutions, and so on) and authentication through photo tagging in social networks. We propose to improve face recognition with the Permutation Coding Neural Classifier (PCNC) using a special type of distortions of original images (for example, rotations) to train the neural network. We applied the distortions to the initial image database (the FRAV2D image database) and produced an extended rotated version of it that allowed us to improve the training process of PCNC neural classifier. The results obtained show a better recognition rate in comparison to Support Vector Machine (SVM) and Iterative Closest Point (ICP).","PeriodicalId":433659,"journal":{"name":"3rd IEEE International Work-Conference on Bioinspired Intelligence","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3rd IEEE International Work-Conference on Bioinspired Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWOBI.2014.6913937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The face recognition is a very important task in security (airports, institutions, and so on) and authentication through photo tagging in social networks. We propose to improve face recognition with the Permutation Coding Neural Classifier (PCNC) using a special type of distortions of original images (for example, rotations) to train the neural network. We applied the distortions to the initial image database (the FRAV2D image database) and produced an extended rotated version of it that allowed us to improve the training process of PCNC neural classifier. The results obtained show a better recognition rate in comparison to Support Vector Machine (SVM) and Iterative Closest Point (ICP).
旋转畸变对PCNC人脸识别的改进
人脸识别在安检(机场、机构等)和社交网络中通过照片标签进行身份验证是一项非常重要的任务。我们建议使用排列编码神经分类器(PCNC)改进人脸识别,使用一种特殊类型的原始图像扭曲(例如旋转)来训练神经网络。我们将扭曲应用于初始图像数据库(FRAV2D图像数据库),并生成了它的扩展旋转版本,这使我们能够改进PCNC神经分类器的训练过程。结果表明,与支持向量机(SVM)和迭代最近点(ICP)相比,该方法具有更好的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信